skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Use of Thermistor Temperature Sensors for Cyber-Physical System Security
The last few decades have seen a large proliferation in the prevalence of cyber-physical systems. This has been especially highlighted by the explosive growth in the number of Internet of Things (IoT) devices. Unfortunately, the increasing prevalence of these devices has begun to draw the attention of malicious entities which exploit them for their own gain. What makes these devices especially attractive is the various resource constraints present in these devices that make it difficult to add standard security features. Therefore, one intriguing research direction is creating security solutions out of already present components such as sensors. Physically Unclonable Functions (PUFs) are one potential solution that use intrinsic variations of the device manufacturing process for provisioning security. In this work, we propose a novel weak PUF design using thermistor temperature sensors. Our design uses the differences in resistance variation between thermistors in response to temperature change. To generate a PUF that is reliable across a range of temperatures, we use a response-generation algorithm that helps mitigate the effects of temperature variation on the thermistors. We tested the performance of our proposed design across a range of environmental operating conditions. From this we were able to evaluate the reliability of the proposed PUF with respect to variations in temperature and humidity. We also evaluated the PUF’s uniqueness using Monte Carlo simulations.  more » « less
Award ID(s):
1738662
PAR ID:
10208139
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sensors
Volume:
19
Issue:
18
ISSN:
1424-8220
Page Range / eLocation ID:
3905
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Internet of Things (IoT) devices are mostly small and operate wirelessly on limited battery supply, and therefore have stringent constraints on power consumption and hardware resources. Therefore, energy-efficient (low energy) design is paramount for the successful deployment of resource constrained IoT devices. Further, Physical Unclonable Functions (PUFs) have evolved as a popular hardware security primitive for low cost, mass produced IoT devices with very constrained resources. Energy harvesting technologies utilizing solar cells are being used in ultra-low power IoT devices to satisfy the energy requirement. In this paper, we utilize the intrinsic variations in solar cells to design a novel solar cell based PUF. As a proof of concept, we have used the Tiva TM4C123GH6PM microcontroller to build our solar cell based PUF. From our experiments, we found that the proposed solar cell based PUF has the uniformity value of 49.21% which is close to the ideal value of 50%. Further, the proposed solar cell based PUF has worst case reliabilities of 92.97% and 90.62% with variations in temperature and light intensity, respectively. 
    more » « less
  2. Padhy, Sudarsan; Oria, Vincent (Ed.)
    The simplicity, low cost, and scalability of Internet of Things (IoT) devices have led researchers to study their applications in a wide range of areas such as Healthcare, Transportation, and Agriculture. IoT devices help farmers to monitor the conditions in a field. These are connected to edge devices for real-time analysis. The edge servers send commands to actuators in the farm directly, without human intervention. At the same time, security vulnerabilities are a big concern, concomitant with the increasing utilization of IoT devices. If the duplication of an IoT device occurs and attackers gain access to the system, then the integrity of the entire ecosystem will be at stake, regardless of the application domain. This paper presents a Physical Unclonable Function (PUF) based hardware security primitive for the authentication of Internet of Agro-Things (IoAT) devices. The proposed security scheme has been prototyped with a testbed evaluation. An arbiter PUF module has been used for the validation of the proposed scheme. The PUF based security primitive is lightweight, scalable, and robust as it mainly depends on inherent manufacturing variations, thereby ensuring no chance for the duplication of IoT devices. 
    more » « less
  3. Amsaad, F; Abdelgawad, A; Jamil, A (Ed.)
    Fault Injection attack is a type of side-channel attack on the Physical Unclonable Function (PUF) module that can induce faults in the PUF response by manipulating the PUF circuit behavior through voltage glitches, laser attacks, temperature manipulations, or any other attacks potentially leading to information loss or security system failure. This type of attack exposes the physical characteristics of PUFs that can be analyzed to predict or compromise the unique challenge response pairs (CRPs) reducing the security and reliability of the PUF. Mitigation strategies against such attacks typically include adding noise to the PUF output, using error-correcting codes, or enhanced cryptographic protocols that obscure physical side-channel attacks. In this research, we propose a Generative Adversarial Network (GAN) based security model, that monitors the PUF behavior and detects the variations in PUF response. The model can detect glitches in the PUF response and generate alerts to take mitigation measures. 
    more » « less
  4. Security is of importance for communication networks, and many network nodes, like sensors and IoT devices, are resource-constrained. Physical Unclonable Functions (PUFs) leverage physical variations of the integrated circuits to produce responses unique to individual circuits and have the potential for delivering security for low-cost networks. But before a PUF can be adopted for security applications, all security vulnerabilities must be discovered. Recently, a new PUF known as Interpose PUF (IPUF) was proposed, which was tested to be secure against reliability-based modeling attacks and machine learning attacks when the attacked IPUF is of small size. A recent study showed IPUFs succumbed to a divide-and-conquer attack, and the attack method requires the position of the interpose bit known to the attacker, a condition that can be easily obfuscated by using a random interpose position. Thus, large IPUFs may still remain secure against all known modeling attacks if the interpose position is unknown to attackers. In this paper, we present a new modeling attack method of IPUFs using multilayer neural networks, and the attack method requires no knowledge of the interpose position. Our attack was tested on simulated IPUFs and silicon IPUFs implemented on FPGAs, and the results showed that many IPUFs which were resilient against existing attacks cannot withstand our new attack method, revealing a new vulnerability of IPUFs by re-defining the boundary between secure and insecure regions in the IPUF parameter space. 
    more » « less
  5. Abstract With the fast growth of the number of electronic devices on the internet of things (IoT), hardware‐based security primitives such as physically unclonable functions (PUFs) have emerged to overcome the shortcomings of conventional software‐based cryptographic technology. Existing PUFs exploit manufacturing process variations in a semiconductor foundry technology. This results in a static challenge–response behavior, which can present a long‐term security risk. This study shows a reconfigurable PUF based on nanoscale magnetic tunnel junction (MTJ) arrays that uses stochastic dynamics induced by voltage‐controlled magnetic anisotropy (VCMA) for true random bit generation. A total of 100 PUF instances are implemented using 10 ns voltage pulses on a single chip with a 10 × 10 MTJ array. The unipolar nature of the VCMA mechanism is exploited to stabilize the MTJ state and eliminate bit errors during readout. All PUF instances show entropy close to one, inter‐Hamming distance close to 50%, and no bit errors in 104repeated readout measurements. 
    more » « less