skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ProvIoT: Detecting Stealthy Attacks in IoT through Federated Edge-Cloud Security
Internet of Things (IoT) devices have increased drastically in complexity and prevalence within the last decade. Alongside the proliferation of IoT devices and applications, attacks targeting them have gained popularity. Recent large-scale attacks such as Mirai and VPNFilter highlight the lack of comprehensive defenses for IoT devices. Existing security solutions are inadequate against skilled adversaries with sophisticated and stealthy attacks against IoT devices. Powerful provenance-based intrusion detection systems have been successfully deployed in resource-rich servers and desktops to identify advanced stealthy attacks. However, IoT devices lack the memory, storage, and computing resources to directly apply these provenance analysis techniques on the device. This paper presents ProvIoT, a novel federated edge-cloud security framework that enables on-device syscall-level behavioral anomaly detection in IoT devices. ProvIoT applies federated learning techniques to overcome data and privacy limitations while minimizing network overhead. Infrequent on-device training of the local model requires less than 10% CPU overhead; syncing with the global models requires sending and receiving 2MB over the network. During normal offline operation, ProvIoT periodically incurs less than 10% CPU overhead and less than 65MB memory usage for data summarization and anomaly detection. Our evaluation shows that ProvIoT detects fileless malware and stealthy APT attacks with an average F1 score of 0.97 in heterogeneous real-world IoT applications. ProvIoT is a step towards extending provenance analysis to resource-constrained IoT devices, beginning with well-resourced IoT devices such as the RaspberryPi, Jetson Nano, and Google TPU.  more » « less
Award ID(s):
2331424
PAR ID:
10540636
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Format(s):
Medium: X
Location:
Abu Dhabi, United Arab Emirates
Sponsoring Org:
National Science Foundation
More Like this
  1. IoT devices fundamentally lack built-in security mechanisms to protect themselves from security attacks. Existing works on improving IoT security mostly focus on detecting anomalous behaviors of IoT devices. However, these existing anomaly detection schemes may trigger an overwhelmingly large number of false alerts, rendering them unusable in detecting compromised IoT devices. In this paper we develop an effective and efficient framework, named CUMAD, to detect compromised IoT devices. Instead of directly relying on individual anomalous events, CUMAD aims to accumulate sufficient evidence in detecting compromised IoT devices, by integrating an autoencoder-based anomaly detection subsystem with a sequential probability ratio test (SPRT)-based sequential hypothesis testing subsystem. CUMAD can effectively reduce the number of false alerts in detecting compromised IoT devices, and moreover, it can detect compromised IoT devices quickly. Our evaluation studies based on the public-domain N-BaIoT dataset show that CUMAD can on average reduce the false positive rate from about 3.57% using only the autoencoder-based anomaly detection scheme to about 0.5%; in addition, CUMAD can detect compromised IoT devices quickly, with less than 5 observations on average. 
    more » « less
  2. He, J.; Palpanas, T.; Wang, W. (Ed.)
    IoT devices fundamentally lack built-in security mechanisms to protect themselves from security attacks. Existing works on improving IoT security mostly focus on detecting anomalous behaviors of IoT devices. However, these existing anomaly detection schemes may trigger an overwhelmingly large number of false alerts, rendering them unusable in detecting compromised IoT devices. In this paper we develop an effective and efficient framework, named CUMAD, to detect compromised IoT devices. Instead of directly relying on individual anomalous events, CUMAD aims to accumulate sufficient evidence in detecting compromised IoT devices, by integrating an autoencoder-based anomaly detection subsystem with a sequential probability ratio test (SPRT)-based sequential hypothesis testing subsystem. CUMAD can effectively reduce the number of false alerts in detecting compromised IoT devices, and moreover, it can detect compromised IoT devices quickly. Our evaluation studies based on the public-domain N-BaIoT dataset show that CUMAD can on average reduce the false positive rate from about 3.57% using only the autoencoder-based anomaly detection scheme to about 0.5%; in addition, CUMAD can detect compromised IoT devices quickly, with less than 5 observations on average. 
    more » « less
  3. By 2018, it is no secret to the global networking community: Internet of Things (IoT) devices, usually controlled by IoT applications and applets, have dominated human lives. It has been shown that popular applet platforms (including If This Then That (IFTTT)) are susceptible to attacks that try to exfiltrate private photos, leak user location, etc. As new attacks might show up very frequently, tracking them fast and in an efficient and scalable manner is a daunting task due to the limited (e.g., memory, energy) resources at the IoT/mobile device and the large network size. Towards that direction, in this paper we propose a decentralized Dynamic Information Flow Tracking (DDIFT) framework that overcomes these challenges, better adapts to the IoT context, and further, is able to illuminate IoT applet attacks. In doing so, we leverage the synergy between: (i) a dynamic information flow tracking module that considers the application of tags with different types along with provenance information and runs in the mobile device at a fast timescale, (ii) a forensics analysis module running in the cloud at a slow timescale, (iii) distributed optimization to optimize various functionalities of the above modules as well as their interaction. We show that our framework is able to detect IoT applet attacks with higher accuracy (on average 81% improvement for different URL upload attack scenarios) and decreases resource wastage (on average 71% less memory usage under different integrity attack scenarios) compared to traditional DIFT, opening new horizons for IoT privacy and security. 
    more » « less
  4. By 2018, it is no secret to the global networking community: Internet of Things (IoT) devices, usually controlled by IoT applications and applets, have dominated human lives. It has been shown that popular applet platforms (including If This Then That (IFTTT)) are susceptible to attacks that try to exfiltrate private photos, leak user location, etc. As new attacks might show up very frequently, tracking them fast and in an efficient and scalable manner is a daunting task due to the limited (e.g., memory, energy) resources at the IoT/mobile device and the large network size. Towards that direction, in this paper we propose a decentralized Dynamic Information Flow Tracking (DDIFT) framework that overcomes these challenges, better adapts to the IoT context, and further, is able to illuminate IoT applet attacks. In doing so, we leverage the synergy between: (i) a dynamic information flow tracking module that considers the application of tags with different types along with provenance information and runs in the mobile device at a fast timescale, (ii) a forensics analysis module running in the cloud at a slow timescale, (iii) distributed optimization to optimize various functionalities of the above modules as well as their interaction. We show that our framework is able to detect IoT applet attacks with higher accuracy (on average 81% improvement for different URL upload attack scenarios) and decreases resource wastage (on average 71% less memory usage under different integrity attack scenarios) compared to traditional DIFT, opening new horizons for IoT privacy and security. 
    more » « less
  5. Internet of Things (IoT) have broad and deep penetration into our society, and many of them are resource-constrained, calling for lightweight security protocols. Physical unclonable functions (PUFs) leverage physical variations of circuits to produce responses unique for individual devices, and hence are not reproducible even by their manufacturers. Implementable with simplistic circuits and operable with low energy, PUFs are promising candidates as security primitives for resource-constrained IoT devices. Arbiter PUF (APUF) and its variants are lightweight in resource requirements but suffer from vulnerability to machine learning attacks. To defend APUF variants against machine learning attacks, in this paper we investigate a challenge input interface, which incurs low overhead. Analytical and experimental studies were carried out, showing substantial improvement of resistance against machine learning attacks when a PUF is equipped with the interface, rendering interfaced APUF variants promising candidates for security critical applications. 
    more » « less