skip to main content


Title: Oxidation Induced Stresses in High-Temperature Oxidation of Steel: A Multiphase Field Study
Oxide growth and the induced stresses in the high-temperature oxidation of steel were studied by a multiphase field model. The model incorporates both chemical and elastic energy to capture the coupled oxide kinetics and generated stresses. Oxidation of a flat surface and a sharp corner are considered at two high temperatures of 850 °C and 1180 °C to investigate the effects of geometry and temperature elevation on the shape evolution of oxides and the induced stresses. Results show that the model is capable of capturing the oxide thickness and its outward growth, comparable to the experiments. In addition, it was shown that there is an interaction between the evolution of oxide and the generated stresses, and the oxide layer evolves to reduce stress concentrations by rounding the sharp corners in the geometry. Increasing the temperature may increase or decrease the stress levels depending on the contribution of eigen strain in the generated elastic strain energy during oxidation.  more » « less
Award ID(s):
1911280
NSF-PAR ID:
10208339
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Metals
Volume:
10
Issue:
6
ISSN:
2075-4701
Page Range / eLocation ID:
801
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Solid-oxide iron-air batteries are an emerging technology for large-scale energy storage, but mechanical degradation of Fe-based storage materials limits battery lifetime. Experimental studies have revealed cycling degradation due to large volume changes during oxidation/reduction (via H2O/H2at 800 °C), but degradation has not yet been correlated with the microstructural stress and strain evolution. Here, we implement a finite element model for oxidation of a Fe lamella to FeO (74% volumetric expansion), in a lamellar Fe foam designed for battery applications. Growth of FeO at the Fe/gas interface is coupled, via an oxidation reaction and solid-state diffusion, with the shrinkage rate of the Fe lamellar core. Using isotropic linear elasticity and plastic hardening, the model simulates deformation of a continuously growing FeO layer by dynamically switching “gas” elements into new “FeO” elements along a sharp FeO/gas interface. As oxidation progresses, the effective plastic strain and von Mises stress increase in FeO. Distribution of tensile and compressive stresses along the Fe/FeO interface are validated by oxidation theory and explain interface delamination, as observed during in operando X-ray tomography experiments. The model explains the superior stability of lamellar vs dendritic foam architectures and the improved redox lifetime of Fe-Ni foams.

     
    more » « less
  2. The oxides of platinum group metals are promising for future electronics and spintronics due to the delicate interplay of spin-orbit coupling and electron correlation energies. However, their synthesis as thin films remains challenging due to their low vapour pressures and low oxidation potentials. Here we show how epitaxial strain can be used as a control knob to enhance metal oxidation. Using Ir as an example, we demonstrate the use of epitaxial strain in engineering its oxidation chemistry, enabling phase-pure Ir or IrO2 films despite using identical growth conditions. The observations are explained using a density-functional-theory-based modified formation enthalpy framework, which highlights the important role of metal-substrate epitaxial strain in governing the oxide formation enthalpy. We also validate the generality of this principle by demonstrating epitaxial strain effect on Ru oxidation. The IrO2 films studied in our work further revealed quantum oscillations, attesting to the excellent film quality. The epitaxial strain approach we present could enable growth of oxide films of hard-to-oxidize elements using strain engineering. 
    more » « less
  3. Like many FeCrAl-based alloys, and some MAX phases, the atomically laminated boride, MoAlB, forms slow-growing, adherent Al2O3 scales when heated in air to 1350°C. Herein the oxidation of MoAlB ceramics in air was studied in the 1100–1400°C temperature range for up to 200 h. At 1400°C, the oxide scale was heavily cracked and spalled. At 1100°C, and up to 20 h, mass loss was recorded. At 1300°C and 1350°C, subparabolic, approximately cubic kinetics were observed, as a result of growth and coarsening of the Al2O3 grains in the oxide scale. At 1200°C, the weight gain kinetics were nearly linear, while the oxide thickening kinetics were approximately cubic likely due to cubic growth of Al2O3 and concurrent volatility of constituents in the oxide scale. The cyclic oxidation resistance was also good for up to 125, 1-hour, cycles at 1200°C. Analysis of grain coarsening and scale thickening kinetics suggest that oxygen grain boundary diffusivity is the rate controlling mechanism for the growth of Al2O3 scales at 1300°C and 1350°C. Dimensional changes at samples’ corners after long oxidation at T > 1200°C may limit the maximum operational temperature of MoAlB. 
    more » « less
  4. Microstructure evolution modeling using finite element crystal plasticity (FECP), Monte- Carlo (MC), and phase field (PF) methods are being used to simulate microstructure evolution in Ti-6Al-4V under thermomechanical loading conditions. FECP is used to simulate deformation induced evolution of the microstructure and compute heterogeneous stored energy providing additional source of energy to MC and PF models. The MC grain growth model, calibrated using literature and experimental data, is used to simulate α+𝛽 grain growth. A multi-phase field, augmented with crystallographic symmetry and orientation relationship between α-𝛽, is employed to model simultaneous evolution and growth of all twelve α-variants in 3D. The influence of transformation and coherency strain energy on α-variant selection is studied by coupling the model with the Khachaturyan-Shatalov formalism for elastic strain calculation. This FECP/MC/PF suite will be able to simulate evolution of grains in the microstructure and within individual 𝛽- grains during typical thermomechanical processing conditions. 
    more » « less
  5. Maini, Philip K (Ed.)
    Experiments on tumor spheroids have shown that compressive stress from their environment can reversibly decrease tumor expansion rates and final sizes. Stress release experiments show that nonuniform anisotropic elastic stresses can be distributed throughout. The elastic stresses are maintained by structural proteins and adhesive molecules, and can be actively relaxed by a variety of biophysical processes. In this paper, we present a new continuum model to investigate how the growth-induced elastic stresses and active stress relaxation, in conjunction with cell size control feedback machinery, regulate the cell density and stress distributions within growing tumors as well as the tumor sizes in the presence of external physical confinement and gradients of growth-promoting chemical fields. We introduce an adaptive reference map that relates the current position with the reference position but adapts to the current position in the Eulerian frame (lab coordinates) via relaxation. This type of stress relaxation is similar to but simpler than the classical Maxwell model of viscoelasticity in its formulation. By fitting the model to experimental data from two independent studies of tumor spheroid growth and their cell density distributions, treating the tumors as incompressible, neo-Hookean elastic materials, we find that the rates of stress relaxation of tumor tissues can be comparable to volumetric growth rates. Our study provides insight on how the biophysical properties of the tumor and host microenvironment, mechanical feedback control and diffusion-limited differential growth act in concert to regulate spatial patterns of stress and growth. When the tumor is stiffer than the host, our model predicts tumors are more able to change their size and mechanical state autonomously, which may help to explain why increased tumor stiffness is an established hallmark of malignant tumors. 
    more » « less