skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oxidation Induced Stresses in High-Temperature Oxidation of Steel: A Multiphase Field Study
Oxide growth and the induced stresses in the high-temperature oxidation of steel were studied by a multiphase field model. The model incorporates both chemical and elastic energy to capture the coupled oxide kinetics and generated stresses. Oxidation of a flat surface and a sharp corner are considered at two high temperatures of 850 °C and 1180 °C to investigate the effects of geometry and temperature elevation on the shape evolution of oxides and the induced stresses. Results show that the model is capable of capturing the oxide thickness and its outward growth, comparable to the experiments. In addition, it was shown that there is an interaction between the evolution of oxide and the generated stresses, and the oxide layer evolves to reduce stress concentrations by rounding the sharp corners in the geometry. Increasing the temperature may increase or decrease the stress levels depending on the contribution of eigen strain in the generated elastic strain energy during oxidation.  more » « less
Award ID(s):
1911280
PAR ID:
10208339
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Metals
Volume:
10
Issue:
6
ISSN:
2075-4701
Page Range / eLocation ID:
801
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The oxides of platinum group metals are promising for future electronics and spintronics due to the delicate interplay of spin-orbit coupling and electron correlation energies. However, their synthesis as thin films remains challenging due to their low vapour pressures and low oxidation potentials. Here we show how epitaxial strain can be used as a control knob to enhance metal oxidation. Using Ir as an example, we demonstrate the use of epitaxial strain in engineering its oxidation chemistry, enabling phase-pure Ir or IrO2 films despite using identical growth conditions. The observations are explained using a density-functional-theory-based modified formation enthalpy framework, which highlights the important role of metal-substrate epitaxial strain in governing the oxide formation enthalpy. We also validate the generality of this principle by demonstrating epitaxial strain effect on Ru oxidation. The IrO2 films studied in our work further revealed quantum oscillations, attesting to the excellent film quality. The epitaxial strain approach we present could enable growth of oxide films of hard-to-oxidize elements using strain engineering. 
    more » « less
  2. Like many FeCrAl-based alloys, and some MAX phases, the atomically laminated boride, MoAlB, forms slow-growing, adherent Al2O3 scales when heated in air to 1350°C. Herein the oxidation of MoAlB ceramics in air was studied in the 1100–1400°C temperature range for up to 200 h. At 1400°C, the oxide scale was heavily cracked and spalled. At 1100°C, and up to 20 h, mass loss was recorded. At 1300°C and 1350°C, subparabolic, approximately cubic kinetics were observed, as a result of growth and coarsening of the Al2O3 grains in the oxide scale. At 1200°C, the weight gain kinetics were nearly linear, while the oxide thickening kinetics were approximately cubic likely due to cubic growth of Al2O3 and concurrent volatility of constituents in the oxide scale. The cyclic oxidation resistance was also good for up to 125, 1-hour, cycles at 1200°C. Analysis of grain coarsening and scale thickening kinetics suggest that oxygen grain boundary diffusivity is the rate controlling mechanism for the growth of Al2O3 scales at 1300°C and 1350°C. Dimensional changes at samples’ corners after long oxidation at T > 1200°C may limit the maximum operational temperature of MoAlB. 
    more » « less
  3. Abstract An extensive examination of the nanoscale, crystallographic growth dynamics of the system, which is impacted by the thermal energy given to the GaN, is carried out to derive a deeper understanding of the growth kinetics, morphology and microstructure evolution, chemical bonding, and optical properties of Ga─O─N films. Thermal annealing of GaN films is performed in the temperature range of 900–1200 °C. Crystal structure, phase formation, chemical composition, surface morphology, and microstructure evolution of Ga─O─N films are investigated as a function of temperature. Increasing temperature induces surface oxidation, which results in the formation of stable β‐Ga2O3phase in the GaN matrix, where the overall film composition evolves from nitride (GaN) to oxynitride (Ga─O─N). While GaN surfaces are smooth, planar, and featureless, oxidation induced granular‐to‐rod shaped morphology evolution is seen with increasing temperature to 1200 °C. The considerable texturing and stability of the nanocrystalline Ga─O─N on Si substrates can be attributed to the surface and interface driven modification because of thermal treatment. Corroborating with structure and chemical changes, Raman spectroscopic analyses also indicate that the chemical bonding evolution progresses from fully Ga─N bonds to Ga─O─N. While the GaN oxidation process starts with the formation of β‐Ga2O3at an annealing temperature of 1000 °C, higher annealing temperatures induce structural distortion with the potential formation of Ga─O─N bonds. The structure‐phase‐chemical composition correlation, which will be useful for nanocrystalline materials for selective optoelectronic applications, is established in Ga─O─N films made by thermal treatment of GaN. 
    more » « less
  4. Maini, Philip K (Ed.)
    Experiments on tumor spheroids have shown that compressive stress from their environment can reversibly decrease tumor expansion rates and final sizes. Stress release experiments show that nonuniform anisotropic elastic stresses can be distributed throughout. The elastic stresses are maintained by structural proteins and adhesive molecules, and can be actively relaxed by a variety of biophysical processes. In this paper, we present a new continuum model to investigate how the growth-induced elastic stresses and active stress relaxation, in conjunction with cell size control feedback machinery, regulate the cell density and stress distributions within growing tumors as well as the tumor sizes in the presence of external physical confinement and gradients of growth-promoting chemical fields. We introduce an adaptive reference map that relates the current position with the reference position but adapts to the current position in the Eulerian frame (lab coordinates) via relaxation. This type of stress relaxation is similar to but simpler than the classical Maxwell model of viscoelasticity in its formulation. By fitting the model to experimental data from two independent studies of tumor spheroid growth and their cell density distributions, treating the tumors as incompressible, neo-Hookean elastic materials, we find that the rates of stress relaxation of tumor tissues can be comparable to volumetric growth rates. Our study provides insight on how the biophysical properties of the tumor and host microenvironment, mechanical feedback control and diffusion-limited differential growth act in concert to regulate spatial patterns of stress and growth. When the tumor is stiffer than the host, our model predicts tumors are more able to change their size and mechanical state autonomously, which may help to explain why increased tumor stiffness is an established hallmark of malignant tumors. 
    more » « less
  5. null (Ed.)
    The operation of a Li-ion battery involves a concerted sequence of mass and charge transport processes, which are underpinned by alternating dilation/contraction of the active electrode materials. Several Li-ion battery failure mechanisms can be directly traced to lattice-mismatch strain arising from local compositional heterogeneities. The mechanisms of chemo-mechanical coupling that effect phase separation and the resulting complex evolution of internal stress fields remain inadequately understood. This work employs X-ray microscopy techniques to image the evolution of composition and stress across individual bent V 2 O 5 particles. Experimental findings show that lattice strain imposed by the deformation of an individual cathode particle profoundly modifies phase separation patterns, yielding striated Li-rich domains ensconced within a Li-poor matrix. Particle-level inhomogeneities compound across scales resulting in fracture and capacity fade. Coupled phase field modeling of the evolution of domains reveals that the observed patterns minimize the energetic costs incurred by the geometrically imposed strain gradients during lithiation of the material and illustrate that phase separation motifs depend sensitively on the particle geometry, dimensions, interfacial energetics, and lattice incommensurability. Sharp differences in phase separation patterns are observed between lithiation and delithiation. This work demonstrates the promise of strain-engineering and particle geometry to deterministically control phase separation motifs such as to minimize accumulated stresses and mitigate important degradation mechanisms. 
    more » « less