- Award ID(s):
- 1762774
- NSF-PAR ID:
- 10208447
- Date Published:
- Journal Name:
- Proceedings of the International Society for Magnetic Resonance in Medicine Scientific Meeting and Exhibition
- ISSN:
- 1524-6965
- Page Range / eLocation ID:
- 0164
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Magnetic resonance elastography (MRE) has emerged as a sensitive imaging technique capable of providing a quantitative understanding of neural microstructural integrity. However, a reliable method for the quantification of the anisotropic mechanical properties of human white matter is currently lacking, despite the potential to illuminate the pathophysiology behind neurological disorders and traumatic brain injury. In this study, we examine the use of multiple excitations in MRE to generate wave displacement data sufficient for anisotropic inversion in white matter. We show the presence of multiple unique waves from each excitation which we combine to solve for parameters of an incompressible, transversely isotropic (ITI) material: shear modulus, μ, shear anisotropy, ϕ, and tensile anisotropy, ζ. We calculate these anisotropic parameters in the corpus callosum body and find the mean values as μ = 3.78 kPa, ϕ = 0.151, and ζ = 0.099 (at 50 Hz vibration frequency). This study demonstrates that multi-excitation MRE provides displacement data sufficient for the evaluation of the anisotropic properties of white matter.more » « less
-
Abstract Motivated by the need to interpret the results from a combined use of
in vivo brain Magnetic Resonance Elastography (MRE) and Diffusion Tensor Imaging (DTI), we developed a computational framework to study the sensitivity of single-frequency MRE and DTI metrics to white matter microstructure and cell-level mechanical and diffusional properties. White matter was modeled as a triphasic unidirectional composite, consisting of parallel cylindrical inclusions (axons) surrounded by sheaths (myelin), and embedded in a matrix (glial cells plus extracellular matrix). Only 2D mechanics and diffusion in the transverse plane (perpendicular to the axon direction) was considered, and homogenized (effective) properties were derived for a periodic domain containing a single axon. The numerical solutions of the MRE problem were performed with ABAQUS and by employing a sophisticated boundary-conforming grid generation scheme. Based on the linear viscoelastic response to harmonic shear excitation and steady-state diffusion in the transverse plane, a systematic sensitivity analysis of MRE metrics (effective transverse shear storage and loss moduli) and DTI metric (effective radial diffusivity) was performed for a wide range of microstructural and intrinsic (phase-based) physical properties. The microstructural properties considered were fiber volume fraction, and the myelin sheath/axon diameter ratio. The MRE and DTI metrics are very sensitive to the fiber volume fraction, and the intrinsic viscoelastic moduli of the glial phase. The MRE metrics are nonlinear functions of the fiber volume fraction, but the effective diffusion coefficient varies linearly with it. Finally, the transverse metrics of both MRE and DTI are insensitive to the axon diameter in steady state. Our results are consistent with the limited anisotropic MRE and co-registered DTI measurements, mainly in thecorpus callosum , available in the literature. We conclude that isotropic MRE and DTI constitutive models are good approximations for myelinated white matter in the transverse plane. The unidirectional composite model presented here is used for the first time to model harmonic shear stress under MRE-relevant frequency on the cell level. This model can be extended to 3D in order to inform the solution of the inverse problem in MRE, establish the biological basis of MRE metrics, and integrate MRE/DTI with other modalities towards increasing the specificity of neuroimaging. -
Abstract This paper describes a new method for estimating anisotropic mechanical properties of fibrous soft tissue by imaging shear waves induced by focused ultrasound (FUS) and analyzing their direction-dependent speeds. Fibrous materials with a single, dominant fiber direction may exhibit anisotropy in both shear and tensile moduli, reflecting differences in the response of the material when loads are applied in different directions. The speeds of shear waves in such materials depend on the propagation and polarization directions of the waves relative to the dominant fiber direction. In this study, shear waves were induced in muscle tissue (chicken breast) ex vivo by harmonically oscillating the amplitude of an ultrasound beam focused in a cylindrical tissue sample. The orientation of the fiber direction relative to the excitation direction was varied by rotating the sample. Magnetic resonance elastography (MRE) was used to visualize and measure the full 3D displacement field due to the ultrasound-induced shear waves. The phase gradient (PG) of radially propagating “slow” and “fast” shear waves provided local estimates of their respective wave speeds and directions. The equations for the speeds of these waves in an incompressible, transversely isotropic (TI), linear elastic material were fitted to measurements to estimate the shear and tensile moduli of the material. The combination of focused ultrasound and MR imaging allows noninvasive, but comprehensive, characterization of anisotropic soft tissue.more » « less
-
Abstract This paper describes the propagation of shear waves in a Holzapfel–Gasser–Ogden (HGO) material and investigates the potential of magnetic resonance elastography (MRE) for estimating parameters of the HGO material model from experimental data. In most MRE studies the behavior of the material is assumed to be governed by linear, isotropic elasticity or viscoelasticity. In contrast, biological tissue is often nonlinear and anisotropic with a fibrous structure. In such materials, application of a quasi-static deformation (predeformation) plays an important role in shear wave propagation. Closed form expressions for shear wave speeds in an HGO material with a single family of fibers were found in a reference (undeformed) configuration and after imposed predeformations. These analytical expressions show that shear wave speeds are affected by the parameters (μ0, k1, k2, κ) of the HGO model and by the direction and amplitude of the predeformations. Simulations of corresponding finite element (FE) models confirm the predicted influence of HGO model parameters on speeds of shear waves with specific polarization and propagation directions. Importantly, the dependence of wave speeds on the parameters of the HGO model and imposed deformations could ultimately allow the noninvasive estimation of material parameters in vivo from experimental shear wave image data.more » « less
-
Objective: To establish the sensitivity of magnetic resonance elastography (MRE) to active muscle contraction in multiple muscles of the forearm. Methods: We combined MRE of forearm muscles with an MRI-compatible device, the MREbot, to simultaneously measure the mechanical properties of tissues in the forearm and the torque applied by the wrist joint during isometric tasks. We measured shear wave speed of thirteen forearm muscles via MRE in a series of contractile states and wrist postures and fit these outputs to a force estimation algorithm based on a musculoskeletal model. Results: Shear wave speed changed significantly upon several factors, including whether the muscle was recruited as an agonist or antagonist (p = 0.0019), torque amplitude (p ≤ 0.0001), and wrist posture (p = 0.0002). Shear wave speed increased significantly during both agonist (p ≤ 0.0001) and antagonist (p = 0.0448) contraction. Additionally, there was a greater increase in shear wave speed at greater levels of loading. The variations due to these factors indicate the sensitivity to functional loading of muscle. Under the assumption of a quadratic relationship between shear wave speed and muscle force, MRE measurements accounted for an average of 70% of the variance in the measured joint torque. Conclusion: This study shows the ability of MM-MRE to capture variations in individual muscle shear wave speed due to muscle activation and presents a method to estimate individual muscle force through MM-MRE derived measurements of shear wave speed. Significance: MM-MRE could be used to establish normal and abnormal muscle co-contraction patterns in muscles of the forearm controlling hand and wrist function.more » « less