skip to main content

Title: Mammal species occupy different climates following the expansion of human impacts

Cities and agricultural fields encroach on the most fertile, habitable terrestrial landscapes, fundamentally altering global ecosystems. Today, 75% of terrestrial ecosystems are considerably altered by human activities, and landscape transformation continues to accelerate. Human impacts are one of the major drivers of the current biodiversity crisis, and they have had unprecedented consequences on ecosystem function and rates of species extinctions for thousands of years. Here we use the fossil record to investigate whether changes in geographic range that could result from human impacts have altered the climatic niches of 46 species covering six mammal orders within the contiguous United States. Sixty-seven percent of the studied mammals have significantly different climatic niches today than they did before the onset of the Industrial Revolution. Niches changed the most in the portions of the range that overlap with human-impacted landscapes. Whether by forcible elimination/introduction or more indirect means, large-bodied dietary specialists have been extirpated from climatic envelopes that characterize human-impacted areas, whereas smaller, generalist mammals have been facilitated, colonizing these same areas of the climatic space. Importantly, the climates where we find mammals today do not necessarily represent their past habitats. Without mitigation, as we move further into the Anthropocene, we can anticipate more » a low standing biodiversity dominated by small, generalist mammals.

« less
Authors:
; ; ; ;
Award ID(s):
1945013 1655898
Publication Date:
NSF-PAR ID:
10208690
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
2
Page Range or eLocation-ID:
Article No. e1922859118
ISSN:
0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Serrano, Emmanuel (Ed.)
    Excluding large native mammals is an inverse test of rewilding. A 25-year exclosure experiment in an African savanna rangeland offers insight into the potentials and pitfalls of the rewilding endeavor as they relate to the native plant community. A broad theme that has emerged from this research is that entire plant communities, as well as individual plants, adjust to the absence of herbivores in ways that can ill-prepare them for the return of these herbivores. Three lines of evidence suggest that these “naïve” individuals, populations, and communities are likely to initially suffer from herbivore rewilding. First, plots protected from wild herbivores for the past 25 years have developed rich diversity of woody plants that are absent from unfenced plots, and presumably would disappear upon rewilding. Second, individuals of the dominant tree in this system, Acacia drepanolobium , greatly reduce their defences in the absence of browsers, and the sudden arrival of these herbivores (in this case, through a temporary fence break), resulted in far greater elephant damage than for their conspecifics in adjacent plots that had been continually exposed to herbivory. Third, the removal of herbivores favoured the most palatable grass species, and a large number of rarer species, whichmore »presumably would be at risk from herbivore re-introduction. In summary, the native communities that we observe in defaunated landscapes may be very different from their pre-defaunation states, and we are likely to see some large changes to these plant communities upon rewilding with large herbivores, including potential reductions in plant diversity. Lastly, our experimental manipulation of cattle represents an additional test of the role of livestock in rewilding. Cattle are in many ways ecologically dissimilar to wildlife (in particular their greater densities), but in other ways they may serve as ecological surrogates for wildlife, which could buffer ecosystems from some of the ecological costs of rewilding. More fundamentally, African savannah ecosystems represent a challenge to traditional Western definitions of “wilderness” as ecosystems free of human impacts. We support the suggestion that as we “rewild” our biodiversity landscapes, we redefine “wildness” in the 21 st Century to be inclusive of (low impact, and sometimes traditional) human practices that are compatible with the sustainability of native (and re-introduced) biodiversity.« less
  2. BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial Nmore »export to aquatic systems. However, a comprehensive synthesis of N availability metrics, outside of experimental settings and capable of revealing large-scale trends, has not yet been carried out. ADVANCES A growing body of observations confirms that N availability is declining in many nonagricultural ecosystems worldwide. Studies have demonstrated declining wood δ 15 N in forests across the continental US, declining foliar [N] in European forests, declining foliar [N] and δ 15 N in North American grasslands, and declining [N] in pollen from the US and southern Canada. This evidence is consistent with observed global-scale declines in foliar δ 15 N and [N] since 1980. Long-term monitoring of soil-based N availability indicators in unmanipulated systems is rare. However, forest studies in the northeast US have demonstrated decades-long decreases in soil N cycling and N exports to air and water, even in the face of elevated atmospheric N deposition. Collectively, these studies suggest a sustained decline in N availability across a range of terrestrial ecosystems, dating at least as far back as the early 20th century. Elevated atmospheric CO 2 levels are likely a main driver of declines in N availability. Terrestrial plants are now uniformly exposed to ~50% more of this essential resource than they were just 150 years ago, and experimentally exposing plants to elevated CO 2 often reduces foliar [N] as well as plant-available soil N. In addition, globally-rising temperatures may raise soil N supply in some systems but may also increase N losses and lead to lower foliar [N]. Changes in other ecosystem drivers—such as local climate patterns, N deposition rates, and disturbance regimes—individually affect smaller areas but may have important cumulative effects on global N availability. OUTLOOK Given the importance of N to ecosystem functioning, a decline in available N is likely to have far-reaching consequences. Reduced N availability likely constrains the response of plants to elevated CO 2 and the ability of ecosystems to sequester carbon. Because herbivore growth and reproduction scale with protein intake, declining foliar [N] may be contributing to widely reported declines in insect populations and may be negatively affecting the growth of grazing livestock and herbivorous wild mammals. Spatial and temporal patterns in N availability are not yet fully understood, particularly outside of Europe and North America. Developments in remote sensing, accompanied by additional historical reconstructions of N availability from tree rings, herbarium specimens, and sediments, will show how N availability trajectories vary among ecosystems. Such assessment and monitoring efforts need to be complemented by further experimental and theoretical investigations into the causes of declining N availability, its implications for global carbon sequestration, and how its effects propagate through food webs. Responses will need to involve reducing N demand via lowering atmospheric CO 2 concentrations, and/or increasing N supply. Successfully mitigating and adapting to declining N availability will require a broader understanding that this phenomenon is occurring alongside the more widely recognized issue of anthropogenic eutrophication. Intercalibration of isotopic records from leaves, tree rings, and lake sediments suggests that N availability in many terrestrial ecosystems has steadily declined since the beginning of the industrial era. Reductions in N availability may affect many aspects of ecosystem functioning, including carbon sequestration and herbivore nutrition. Shaded areas indicate 80% prediction intervals; marker size is proportional to the number of measurements in each annual mean. Isotope data: (tree ring) K. K. McLauchlan et al. , Sci. Rep. 7 , 7856 (2017); (lake sediment) G. W. Holtgrieve et al. , Science 334 , 1545–1548 (2011); (foliar) J. M. Craine et al. , Nat. Ecol. Evol. 2 , 1735–1744 (2018)« less
  3. Animal foraging and competition are defined by the partitioning of three primary niche axes: space, time, and resources. Human disturbance is rapidly altering the spatial and temporal niches of animals, but the impact of humans on resource consumption and partitioning—arguably the most important niche axis—is poorly understood. We assessed resource consumption and trophic niche partitioning as a function of human disturbance at the individual, population, and community levels using stable isotope analysis of 684 carnivores from seven communities in North America. We detected significant responses to human disturbance at all three levels of biological organization: individual carnivores consumed more human food subsidies in disturbed landscapes, leading to significant increases in trophic niche width and trophic niche overlap among species ranging from mesocarnivores to apex predators. Trophic niche partitioning is the primary mechanism regulating coexistence in many communities, and our results indicate that humans fundamentally alter resource niches and competitive interactions among terrestrial consumers. Among carnivores, niche overlap can trigger interspecific competition and intraguild predation, while the consumption of human foods significantly increases human–carnivore conflict. Our results suggest that human disturbances, especially in the form of food subsidies, may threaten carnivores by increasing the probability of both interspecific competition and human–carnivoremore »conflict. Ultimately, these findings illustrate a potential decoupling of predator–prey dynamics, with impacts likely cascading to populations, communities, and ecosystems.

    « less
  4. Powell, Roger (Ed.)
    Abstract Quaternary climatic oscillations affected species distributions worldwide, creating cycles of connectivity and isolation that impacted population demography and promoted lineage divergence. These effects have been well studied in temperate regions. Taxa inhabiting mesic montane habitats in tropical ecosystems show high levels of endemism and diversification in the distinct mountain ranges they inhabit; such a pattern has commonly been ascribed to past climatic oscillations, but few phylogeographic studies have tested this hypothesis. Here, we combine ecological niche models of species distributions with molecular data to study phylogeographic patterns in two rodents endemic to the highlands of Costa Rica and western Panama (Reithrodontomys creper and Nephelomys devius). In so doing, we apply a novel approach that incorporates a basic ecological principle: the expected positive relationship between environmental suitability and population abundance. Specifically, we use niche models to predict potential patterns of population connectivity and stability of different suitability levels during climatic extremes of the last glacial–interglacial cycle; we then test these predictions with population genetic analyses of a mitochondrial and a nuclear marker. The detailed predictions arising from the different levels of suitability were moderately to highly congruent with the molecular data depending on the species. Overall, results suggest that inmore »these tropical montane ecosystems, cycles of population connectivity and isolation followed a pattern opposite to that typically described for temperate or lowland tropical ecosystems: namely, higher connectivity during the colder glacials, with isolation in montane refugia during the interglacials, including today. Nevertheless, the individualistic patterns for each species indicate a potentially wide gamut of phylogeographic histories reflecting particularities of their niches. Taken together, this study illustrates how phylogeographic inferences may benefit from niche model outputs that provide more detailed predictions of connectivity and finer characterizations of potential refugia through time.« less
  5. Global aridification is projected to intensify. Yet, our knowledge of its potential impacts on species ranges remains limited. Here, we investigate global aridity velocity and its overlap with three sectors (natural protected areas, agricultural areas, and urban areas) and terrestrial biodiversity in historical (1979 through 2016) and future periods (2050 through 2099), with and without considering vegetation physiological response to rising CO2. Both agricultural and urban areas showed a mean drying velocity in history, although the concurrent global aridity velocity was on average +0.05/+0.20 km/yr−1(no CO2effects/with CO2effects; “+” denoting wetting). Moreover, in drylands, the shifts of vegetation greenness isolines were found to be significantly coupled with the tracks of aridity velocity. In the future, the aridity velocity in natural protected areas is projected to change from wetting to drying across RCP (representative concentration pathway) 2.6, RCP6.0, and RCP8.5 scenarios. When accounting for spatial distribution of terrestrial taxa (including plants, mammals, birds, and amphibians), the global aridity velocity would be -0.15/-0.02 km/yr−1(“-” denoting drying; historical), -0.12/-0.15 km/yr−1(RCP2.6), -0.36/-0.10 km/yr−1(RCP6.0), and -0.75/-0.29 km/yr−1(RCP8.5), with amphibians particularly negatively impacted. Under all scenarios, aridity velocity shows much higher multidirectionality than temperature velocity, which is mainly poleward. These results suggest that aridification risks may significantlymore »influence the distribution of terrestrial species besides warming impacts and further impact the effectiveness of current protected areas in future, especially under RCP8.5, which best matches historical CO2emissions [C. R. Schwalmet al.,Proc. Natl. Acad. Sci. U.S.A.117, 19656–19657 (2020)].

    « less