Animals can impact freshwater ecosystem structure and function in ways that persist well beyond the animal’s active presence. These legacy effects can last for months, even decades, and often increase spatial and temporal heterogeneity within a system. Herein, we review examples of structural, biogeochemical, and trophic legacies from animals in stream and river ecosystems with a focus on large vertebrates. We examine how the decline or disappearance of many native animal populations has led to the loss of their legacy effects. We also demonstrate how anthropogenically altered animal populations, such as livestock and invasive species, provide new legacy effects that may partially replace lost animal legacies. However, these new effects often have important functional differences, including stronger, more widespread and homogenizing effects. Understanding the influence of animal legacy effects is particularly important as native animal populations continue to decline and disappear from many ecosystems, because they illustrate the long-term and often unanticipated consequences of biodiversity loss. We encourage the conservation and restoration of native species to ensure that both animal populations and their legacy effects continue to support the structure and function of river ecosystems.
This content will become publicly available on December 1, 2024
- NSF-PAR ID:
- 10484808
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Ecology & Evolution
- Volume:
- 7
- Issue:
- 12
- ISSN:
- 2397-334X
- Page Range / eLocation ID:
- 2004 to 2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves. It is evident that marine foundation species have already been severely impacted by several climate change drivers, often through interactive effects with other human stressors, such as pollution, overfishing, and coastal development. Despite considerable variation in geographical, environmental, and ecological contexts, direct and indirect effects of gradual warming and subsequent heatwaves have emerged as the most pervasive drivers of observed impact and potent threat across all marine foundation species, but effects from sea level rise, ocean acidification, and increased storminess are expected to increase. Documented impacts include changes in the genetic structures, physiology, abundance, and distribution of the foundation species themselves and changes to their interactions with other species, with flow-on effects to associated communities, biodiversity, and ecosystem functioning. We discuss strategies to support marine foundation species into the Anthropocene, in order to increase their resilience and ensure the persistence of the ecosystem services they provide.
-
ABSTRACT In the 12 years since Dudgeon
et al . (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world's lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth's surface, these ecosystems host at least 9.5% of the Earth's described animal species. Furthermore, using the World Wide Fund for Nature's Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i ) changing climates; (ii ) e‐commerce and invasions; (iii ) infectious diseases; (iv ) harmful algal blooms; (v ) expanding hydropower; (vi ) emerging contaminants; (vii ) engineered nanomaterials; (viii ) microplastic pollution; (ix ) light and noise; (x ) freshwater salinisation; (xi ) declining calcium; and (xii ) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem‐level changes through bottom‐up and top‐down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation‐oriented actions (e.g. dam removal, habitat protection policies, managed relocation of species) that have been met with varying levels of success. Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment. -
Abstract Extreme weather events have devastating impacts on human health, economic activities, ecosystems, and infrastructure. It is therefore crucial to anticipate extremes and their impacts to allow for preparedness and emergency measures. There is indeed potential for probabilistic subseasonal prediction on time scales of several weeks for many extreme events. Here we provide an overview of subseasonal predictability for case studies of some of the most prominent extreme events across the globe using the ECMWF S2S prediction system: heatwaves, cold spells, heavy precipitation events, and tropical and extratropical cyclones. The considered heatwaves exhibit predictability on time scales of 3–4 weeks, while this time scale is 2–3 weeks for cold spells. Precipitation extremes are the least predictable among the considered case studies. Tropical cyclones, on the other hand, can exhibit probabilistic predictability on time scales of up to 3 weeks, which in the presented cases was aided by remote precursors such as the Madden–Julian oscillation. For extratropical cyclones, lead times are found to be shorter. These case studies clearly illustrate the potential for event-dependent advance warnings for a wide range of extreme events. The subseasonal predictability of extreme events demonstrated here allows for an extension of warning horizons, provides advance information to impact modelers, and informs communities and stakeholders affected by the impacts of extreme weather events.more » « less
-
Abstract Tropical cyclones can highly modify coastal ecosystems through interactions between their unique set of meteorological traits and an ecosystem’s antecedent conditions. As such, resultant changes to biological community structure are likely storm-specific, yet our understanding of cyclone effects on marine communities is limited compared to communities in terrestrial and freshwater habitats. Using northwestern Gulf of Mexico (NWGOM) mesozooplankton data, we tested: (1) for differences between storm and non-storm community structure and dispersion; (2) if post-storm communities varied between one another; (3) if salinity drove differences; and (4) if physical drivers of abundance and evenness varied between storm and non-storm communities. Mesozooplankton community structure following Hurricanes Harvey, Ike, Rita, and during five non-storm years were analyzed. Post-Ike, post-Rita, and non-storm communities were similar while post-Harvey communities were distinct from non-storm years. A structural equation model revealed stratification and abundance drove community evenness. Post-Harvey mesozooplankton were more abundant in low salinity waters; a pattern muted during non-storm years. NWGOM mesozooplankton community structure was generally resilient to hurricane effects, except when large changes in salinity occurred. Our findings suggest resource availability for planktivorous predators and energy transfer within coastal food webs is altered following cyclones with high precipitation rates.