skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Reference Architecture of Human Cyber-Physical Systems – Part III: Semantic Foundations
The design and analysis of multi-agent human cyber-physical systems in safety-critical or industry-critical domains calls for an adequate semantic foundation capable of exhaustively and rigorously describing all emergent effects in the joint dynamic behavior of the agents that are relevant to their safety and well-behavior. We present such a semantic foundation. This framework extends beyond previous approaches by extending the agent-local dynamic state beyond state components under direct control of the agent and belief about other agents (as previously suggested for understanding cooperative as well as rational behavior) to agent-local evidence and belief about the overall cooperative, competitive, or coopetitive game structure. We argue that this extension is necessary for rigorously analyzing systems of human cyber-physical systems because humans are known to employ cognitive replacement models of system dynamics that are both non-stationary and potentially incongruent. These replacement models induce visible and potentially harmful effects on their joint emergent behavior and the interaction with cyber-physical system components.  more » « less
Award ID(s):
1743772
PAR ID:
10488139
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Editor(s):
Chenyang Lu
Publisher / Repository:
ACM Transactions on Cyber-Physical Systems
Date Published:
Journal Name:
ACM Transactions on Cyber-Physical Systems
Volume:
8
Issue:
1
ISSN:
2378-962X
Page Range / eLocation ID:
1 to 23
Subject(s) / Keyword(s):
human-centered computing, human computer interation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a reference architecture of safety-critical or industry-critical human cyber-physical systems (CPSs) capable of expressing essential classes of system-level interactions between CPS and humans relevant for the societal acceptance of such systems. To reach this quality gate, the expressivity of the model must go beyond classical viewpoints such as operational, functional, and architectural views and views used for safety and security analysis. The model does so by incorporating elements of such systems for mutual introspections in situational awareness, capabilities, and intentions to enable a synergetic, trusted relation in the interaction of humans and CPSs, which we see as a prerequisite for their societal acceptance. The reference architecture is represented as a metamodel incorporating conceptual and behavioral semantic aspects. We illustrate the key concepts of the metamodel with examples from cooperative autonomous driving, the operating room of the future, cockpit-tower interaction, and crisis management. 
    more » « less
  2. In the field of multi-agent autonomous transportation, such as automated payload delivery or highway on-ramp merging, agents routinely exchange knowledge to optimize their shared objective and adapt to environmental novelties through Cooperative Multi-Agent Reinforcement Learning (CMARL) algorithms. This knowledge exchange between agents allows these systems to operate efficiently and adapt to dynamic environments. However, this cooperative learning process is susceptible to adversarial poisoning attacks, as highlighted by contemporary research. Particularly, the poisoning attacks where malicious agents inject deceptive information camouflaged within the differential noise, a pivotal element for differential privacy (DP)-based CMARL algorithms, pose formidable challenges to identify and overcome. The consequences of not addressing this issue are far-reaching, potentially jeopardizing safety-critical operations and the integrity of data privacy in these applications. Existing research has strived to develop anomaly detection based defense models to counteract conventional poisoning methods. Nonetheless, the recurring necessity for model offloading and retraining with labeled anomalous data undermines their practicality, considering the inherently dynamic nature of the safety-critical autonomous transportation applications. Further, it is imperative to maintain data privacy, ensure high performance, and adapt to environmental changes. Motivated by these challenges, this article introduces a novel defense mechanism against stealthy adversarial poisoning attacks in the autonomous transportation domain, termedReinforcing Autonomous Multi-agent Protection through Adversarial Resistance in Transportation(RAMPART). Leveraging a GAN model at each local node, RAMPART effectively filters out malicious advice in an unsupervised manner while generating synthetic samples for each state-action pair to accommodate environmental uncertainties and eliminate the need for labeled training data. Our extensive experimental analysis, conducted in a private payload delivery network—a common application in the autonomous multi-agent transportation domain—demonstrates that RAMPART successfully defends against a DP-exploited poisoning attack with a 30% attack ratio, achieving an F1 score of 0.852 and accuracy of 96.3% in heavy traffic environments. 
    more » « less
  3. null (Ed.)
    Cooperatively avoiding collision is a critical functionality for robots navigating in dense human crowds, failure of which could lead to either overaggressive or overcautious behavior. A necessary condition for cooperative collision avoidance is to couple the prediction of the agents’ trajectories with the planning of the robot’s trajectory. However, it is unclear that trajectory based cooperative collision avoidance captures the correct agent attributes. In this work we migrate from trajectory based coupling to a formalism that couples agent preference distributions. In particular, we show that preference distributions (probability density functions representing agents’ intentions) can capture higher order statistics of agent behaviors, such as willingness to cooperate. Thus, coupling in distribution space exploits more information about inter-agent cooperation than coupling in trajectory space. We thus introduce a general objective for coupled prediction and planning in distribution space, and propose an iterative best response optimization method based on variational analysis with guaranteed sufficient decrease. Based on this analysis, we develop a sampling-based motion planning framework called DistNav1 that runs in real time on a laptop CPU. We evaluate our approach on challenging scenarios from both real world datasets and simulation environments, and benchmark against a wide variety of model based and machine learning based approaches. The safety and efficiency statistics of our approach outperform all other models. Finally, we find that DistNav is competitive with human safety and efficiency performance. 
    more » « less
  4. Chenyang Lu (Ed.)
    As automation increases qualitatively and quantitatively in safety-critical human cyber-physical systems, it is becoming more and more challenging to increase the probability or ensure that human operators still perceive key artifacts and comprehend their roles in the system. In the companion paper, we proposed an abstract reference architecture capable of expressing all classes of system-level interactions in human cyber-physical systems. Here we demonstrate how this reference architecture supports the analysis of levels of communication between agents and helps to identify the potential for misunderstandings and misconceptions. We then develop a metamodel for safe human machine interaction. Therefore, we ask what type of information exchange must be supported on what level so that humans and systems can cooperate as a team, what is the criticality of exchanged information, what are timing requirements for such interactions, and how can we communicate highly critical information in a limited time frame in spite of the many sources of a distorted perception. We highlight shared stumbling blocks and illustrate shared design principles, which rest on established ontologies specific to particular application classes. In order to overcome the partial opacity of internal states of agents, we anticipate a key role of virtual twins of both human and technical cooperation partners for designing a suitable communication. 
    more » « less
  5. Many domains of AI and its effects are established, which mainly rely on their integration modeling cognition of human and AI agents, collecting and representing knowledge using them at the human level, and maintaining decision-making processes towards physical action eligible to and in cooperation with humans. Especially in human-robot interaction, many AI and robotics technologies are focused on human- robot cognitive modeling, from visual processing to symbolic reasoning and from reactive control to action recognition and learning, which will support human-multi-agent cooperative achieving tasks. However, the main challenge is efficiently combining human motivations and AI agents’ purposes in a sharing architecture and reaching a consensus in complex environments and missions. To fill this gap, this workshop brings together researchers from different communities inter- ested in multi-agent systems (MAS) and human-robot interaction (HRI) to explore potential approaches, future research directions, and domains in human-multi-agent cognitive fusion. 
    more » « less