skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Origin and Evolution of the Turtle Body Plan
The origin of turtles and their uniquely shelled body plan is one of the longest standing problems in vertebrate biology. The unfulfilled need for a hypothesis that both explains the derived nature of turtle anatomy and resolves their unclear phylogenetic position among reptiles largely reflects the absence of a transitional fossil record. Recent discoveries have dramatically improved this situation, providing an integrated, time-calibrated model of the morphological, developmental, and ecological transformations responsible for the modern turtle body plan. This evolutionary trajectory was initiated in the Permian (>260 million years ago) when a turtle ancestor with a diapsid skull evolved a novel mechanism for lung ventilation. This key innovation permitted the torso to become apomorphically stiff, most likely as an adaption for digging and a fossorial ecology. The construction of the modern turtle body plan then proceeded over the next 100 million years following a largely stepwise model of osteological innovation.  more » « less
Award ID(s):
1947025 1947001
PAR ID:
10208974
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Ecology, Evolution, and Systematics
Volume:
51
Issue:
1
ISSN:
1543-592X
Page Range / eLocation ID:
143 to 166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tunicates are an evolutionarily significant subphylum of marine chordates, with their phylogenetic position as the sister-group to Vertebrata making them key to unraveling our own deep time origin. Tunicates greatly vary with regards to morphology, ecology, and life cycle, but little is known about the early evolution of the group, e.g. whether their last common ancestor lived freely in the water column or attached to the seafloor. Additionally, tunicates have a poor fossil record, which includes only one taxon with preserved soft-tissues. Here we describeMegasiphon thylakosnov., a 500-million-year-old tunicate from the Marjum Formation of Utah, which features a barrel-shaped body with two long siphons and prominent longitudinal muscles. The ascidiacean-like body of this new species suggests two alternative hypotheses for early tunicate evolution. The most likely scenario positsM. thylakosbelongs to stem-group Tunicata, suggesting that a biphasic life cycle, with a planktonic larva and a sessile epibenthic adult, is ancestral for this entire subphylum. Alternatively, a position within the crown-group indicates that the divergence between appendicularians and all other tunicates occurred 50 million years earlier than currently estimated based on molecular clocks. Ultimately,M. thylakosdemonstrates that fundamental components of the modern tunicate body plan were already established shortly after the Cambrian Explosion. 
    more » « less
  2. This paper presents the TURTLE fault injection platform for inserting faults into SRAM FPGAs. The TURTLE system is designed to gather significant fault injection data to test and validate radiation-induced single-event upset (SEU) mitigation techniques for FPGAs. The TURTLE is a low-cost fault injection platform that emulates upsets within the configuration memory (CRAM) of an FPGA through partial reconfiguration. This work successfully implemented the proposed architecture and performed several successful fault injection campaigns on multiple designs and SEU mitigation techniques. Results in this paper show large amounts of data collected from a fault injection campaign used to validate the PCMF SEU mitigation technique. Over 170 million injections were performed using the TURTLE for this campaign. 
    more » « less
  3. Prairie habitat loss in the United States has led to population declines in many prairie-associated species, including Ornate Box Turtles (Terrapene ornata). Northwest Arkansas is an intergrade zone between the prairie-dwelling T. ornata and the more forestassociated Three-Toed Box Turtle (Terrapene carolina). As such, limited information exists on the potential differences in physiology and thermal ecology between the two box turtle species and how those differences might influence their habitat use. We addressed gaps in our knowledge of the thermal and spatial ecology of T. ornata and T. carolina with a three-part study. First, we compared the thermal profiles of refugia, open, and vegetated microhabitats across degraded prairie, restored prairie, and adjacent forest macrohabitats using operative temperature models and a linear mixed effect model. Second, we measured total evaporative water loss of both species across a range of body sizes. Finally, we fitted a subset of turtles with iButton data loggers and monitored them in the field to examine carapace temperatures and habitat use. Operative temperature models recorded high, largely homogeneous temperatures across microhabitats in degraded prairie and heterogeneous temperatures across restored prairie microhabitats, while forest habitat maintained stable, cool temperatures. Both species exhibited similar evaporative water loss rates; however, T. ornata experienced a broader range of temperatures in the field. Terrapene ornata were exclusively found in prairie habitat, whereas T. carolina was often found in forested habitats and subsurface refugia. Our results demonstrate key differences in box turtle thermal biology and highlight suboptimal thermal characteristics in degraded prairie and forest habitat that should be considered in prairie restoration and management for T. ornata conservation. 
    more » « less
  4. Living turtles are characterized by extraordinarily low species diversity given their age. The clade’s extensive fossil record indicates that climate and biogeography may have played important roles in determining their diversity. We investigated this hypothesis by collecting a molecular dataset for 591 individual turtles that, together, represent 80% of all turtle species, including representatives of all families and 98% of genera, and used it to jointly estimate phylogeny and divergence times. We found that the turtle tree is characterized by relatively constant diversification (speciation minus extinction) punctuated by a single threefold increase. We also found that this shift is temporally and geographically associated with newly emerged continental margins that appeared during the Eocene−Oligocene transition about 30 million years before present. In apparent contrast, the fossil record from this time period contains evidence for a major, but regional, extinction event. These seemingly discordant findings appear to be driven by a common global process: global cooling and drying at the time of the Eocene−Oligocene transition. This climatic shift led to aridification that drove extinctions in important fossil-bearing areas, while simultaneously exposing new continental margin habitat that subsequently allowed for a burst of speciation associated with these newly exploitable ecological opportunities. 
    more » « less
  5. Gilbert, Scott (Ed.)
    Hemichordates, along with echinoderms and chordates, belong to the lineage of bilaterians called the deuterostomes. Their phylogenetic position as an outgroup to chordates provides an opportunity to investigate the evolutionary origins of the chor- date body plan and reconstruct ancestral deuterostome characters. The body plans of the hemichordates and chordates are organizationally divergent making anatomical comparisons very challenging. The developmental underpinnings of animal body plans are often more conservative than the body plans they regulate, and offer a novel data set for making comparisons between morphologically divergent body architectures. Here I review the hemichordate developmental data generated over the past 20 years that further test hypotheses of proposed morphological affinities between the two taxa, but also compare the conserved anteroposterior, dorsoventral axial patterning pro- grams and germ layer specification programs. These data provide an opportunity to determine which developmental programs are ancestral deuterostome or bilaterian innovations, and which ones occurred in stem chordates or vertebrates representing developmental novelties of the chordate body plan. 
    more » « less