skip to main content


Title: Computer-Based PTSD Assessment in VR Exposure Therapy
Post-traumatic stress disorder (PTSD) is a mental health condition affecting people who experienced a traumatic event. In addition to the clinical diagnostic criteria for PTSD, behavioral changes in voice, language, facial expression and head movement may occur. In this paper, we demonstrate how a machine learning model trained on a general population with self-reported PTSD scores can be used to provide behavioral metrics that could enhance the accuracy of the clinical diagnosis with patients. Both datasets were collected from a clinical interview conducted by a virtual agent (SimSensei) [10]. The clinical data was recorded from PTSD patients, who were victims of sexual assault, undergoing a VR exposure therapy. A recurrent neural network was trained on verbal, visual and vocal features to recognize PTSD, according to self-reported PCL-C scores [4]. We then performed decision fusion to fuse three modalities to recognize PTSD in patients with a clinical diagnosis, achieving an F1-score of 0.85. Our analysis demonstrates that machine-based PTSD assessment with self-reported PTSD scores can generalize across different groups and be deployed to assist diagnosis of PTSD.  more » « less
Award ID(s):
1852583
NSF-PAR ID:
10209032
Author(s) / Creator(s):
; ; ;
Editor(s):
Stephanidis, Constantine; Chen, Jessie Y.; Fragomeni, Gino
Date Published:
Journal Name:
HCI International 2020 – Late Breaking Papers: Virtual and Augmented Reality
Page Range / eLocation ID:
440-449
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is well-known that morphological features in the brain undergo changes due to traumatic events and associated disorders such as post-traumatic stress disorder (PTSD). However, existing approaches typically offer group-level comparisons, and there are limited predictive approaches for modeling behavioral outcomes based on brain shape features that can account for heterogeneity in PTSD, which is of paramount interest. We propose a comprehensive shape analysis framework representing brain sub-structures, such as the hippocampus, amygdala, and putamen, as parameterized surfaces and quantifying their shape differences using an elastic shape metric. Under this metric, we compute shape summaries (mean, covariance, PCA) of brain sub-structures and represent individual brain shapes by their principal scores under a shape-PCA basis. These representations are rich enough to allow visualizations of full 3D structures and help understand localized changes. In order to validate the elastic shape analysis, we use the principal components (PCs) to reconstruct the brain structures and perform further evaluation by performing a regression analysis to model PTSD and trauma severity using the brain shapes representedviaPCs and in conjunction with auxiliary exposure variables. We apply our method to data from the Grady Trauma Project (GTP), where the goal is to predict clinical measures of PTSD. The framework seamlessly integrates accurate morphological features and other clinical covariates to yield superior predictive performance when modeling PTSD outcomes. Compared to vertex-wise analysis and other widely applied shape analysis methods, the elastic shape analysis approach results in considerably higher reconstruction accuracy for the brain shape and reveals significantly greater predictive power. It also helps identify local deformations in brain shapes associated with PTSD severity.

     
    more » « less
  2. Abstract Study Objectives

    Dementia is a growing cause of disability and loss of independence in the elderly, yet remains largely underdiagnosed. Early detection and classification of dementia can help close this diagnostic gap and improve management of disease progression. Altered oscillations in brain activity during sleep are an early feature of neurodegenerative diseases and be used to identify those on the verge of cognitive decline.

    Methods

    Our observational cross-sectional study used a clinical dataset of 10 784 polysomnography from 8044 participants. Sleep macro- and micro-structural features were extracted from the electroencephalogram (EEG). Microstructural features were engineered from spectral band powers, EEG coherence, spindle, and slow oscillations. Participants were classified as dementia (DEM), mild cognitive impairment (MCI), or cognitively normal (CN) based on clinical diagnosis, Montreal Cognitive Assessment, Mini-Mental State Exam scores, clinical dementia rating, and prescribed medications. We trained logistic regression, support vector machine, and random forest models to classify patients into DEM, MCI, and CN groups.

    Results

    For discriminating DEM versus CN, the best model achieved an area under receiver operating characteristic curve (AUROC) of 0.78 and area under precision-recall curve (AUPRC) of 0.22. For discriminating MCI versus CN, the best model achieved an AUROC of 0.73 and AUPRC of 0.18. For discriminating DEM or MCI versus CN, the best model achieved an AUROC of 0.76 and AUPRC of 0.32.

    Conclusions

    Our dementia classification algorithms show promise for incorporating dementia screening techniques using routine sleep EEG. The findings strengthen the concept of sleep as a window into neurodegenerative diseases.

     
    more » « less
  3. Introduction: Back pain is one of the most common causes of pain in the United States. Spinal cord stimulation (SCS) is an intervention for patients with chronic back pain (CBP). However, SCS decreases pain in only 58% of patients and relies on self-reported pain scores as outcome measures. An SCS trial is temporarily implanted for seven days and helps to determine if a permanent SCS is needed. Patients that have a >50% reduction in pain from the trial stimulator makes them eligible for permanent implantation. However, self-reported measures reveal little on how mechanisms in the brain are altered. Other measurements of pain intensity, onset, medication, disabilities, depression, and anxiety have been used with machine learning to predict outcomes with accuracies <70%. We aim to predict long-term SCS responders at 6-months using baseline resting EEG and machine learning. Materials and Methods: We obtained 10-minutes of resting electroencephalography (EEG) and pain questionnaires from nine participants with CBP at two time points: 1) pre-trial baseline. 2) Six months after SCS permanent implant surgery. Subjects were designated as high or moderate responders based on the amount of pain relief provided by the long-term (post six months) SCS, and pain scored on a scale of 0-10 with 0 being no pain and 10 intolerable. We used the resting EEG from baseline to predict long-term treatment outcome. Resting EEG data was fed through a pipeline for classification and to map dipole sources. EEG signals were preprocessed using the EEGLAB toolbox. Independent component analysis and dipole fitting were used to linearly unmix the signal and to map dipole sources from the brain. Spectral analysis was performed to obtain the frequency distribution of the signal. Each power band, delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz), as well as the entire spectrum (1-100 Hz), were used for classification. Furthermore, dipole sources were ranked based on classification feature weights to determine the significance of specific regions in the brain. We used support vector machines to predict pain outcomes. Results and Discussion: We found higher frequency powerbands provide overall classification performance of 88.89%. Differences in power are seen between moderate and high responders in both the frontal and parietal regions for theta, alpha, beta, and the entire spectrum (Fig.1). This can potentially be used to predict patient response to SCS. Conclusions: We found evidence of decreased power in theta, alpha, beta, and entire spectrum in the anterior regions of the parietal cortex and posterior regions of the frontal cortex between moderate and high responders, which can be used for predicting treatment outcomes in long-term pain relief from SCS. Long-term treatment outcome prediction using baseline EEG data has the potential to contribute to decision making in terms of permanent surgery, forgo trial periods, and improve clinical efficiency by beginning to understand the mechanism of action of SCS in the human brain. 
    more » « less
  4. Abstract

    Attention control is a basic behavioral process that has been studied for decades. The currently best models of attention control are deep networks trained on free-viewing behavior to predict bottom-up attention control – saliency. We introduce COCO-Search18, the first dataset of laboratory-qualitygoal-directed behaviorlarge enough to train deep-network models. We collected eye-movement behavior from 10 people searching for each of 18 target-object categories in 6202 natural-scene images, yielding$$\sim$$300,000 search fixations. We thoroughly characterize COCO-Search18, and benchmark it using three machine-learning methods: a ResNet50 object detector, a ResNet50 trained on fixation-density maps, and an inverse-reinforcement-learning model trained on behavioral search scanpaths. Models were also trained/tested on images transformed to approximate a foveated retina, a fundamental biological constraint. These models, each having a different reliance on behavioral training, collectively comprise the new state-of-the-art in predicting goal-directed search fixations. Our expectation is that future work using COCO-Search18 will far surpass these initial efforts, finding applications in domains ranging from human-computer interactive systems that can anticipate a person’s intent and render assistance to the potentially early identification of attention-related clinical disorders (ADHD, PTSD, phobia) based on deviation from neurotypical fixation behavior.

     
    more » « less
  5. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less