This paper presents a generative statistical model for analyzing time series of planar shapes. Using elastic shape analysis, we separate object kinematics (rigid motions and speed variability) from morphological evolution, representing the latter through transported velocity fields (TVFs). A principal component analysis (PCA) based dimensionality reduction of the TVF representation provides a finite-dimensional Euclidean framework, enabling traditional time-series analysis. We then fit a vector auto-regressive (VAR) model to the TVF-PCA time series, capturing the statistical dynamics of shape evolution. To characterize morphological changes,we use VAR model parameters for model comparison, synthesis, and sequence classification. Leveraging these parameters, along with machine learning classifiers, we achieve high classification accuracy. Extensive experiments on cell motility data validate our approach, demonstrating its effectiveness in modeling and classifying migrating cells based on morphological evolution—marking a novel contribution to the field.
more »
« less
Elastic shape analysis of brain structures for predictive modeling of PTSD
It is well-known that morphological features in the brain undergo changes due to traumatic events and associated disorders such as post-traumatic stress disorder (PTSD). However, existing approaches typically offer group-level comparisons, and there are limited predictive approaches for modeling behavioral outcomes based on brain shape features that can account for heterogeneity in PTSD, which is of paramount interest. We propose a comprehensive shape analysis framework representing brain sub-structures, such as the hippocampus, amygdala, and putamen, as parameterized surfaces and quantifying their shape differences using an elastic shape metric. Under this metric, we compute shape summaries (mean, covariance, PCA) of brain sub-structures and represent individual brain shapes by their principal scores under a shape-PCA basis. These representations are rich enough to allow visualizations of full 3D structures and help understand localized changes. In order to validate the elastic shape analysis, we use the principal components (PCs) to reconstruct the brain structures and perform further evaluation by performing a regression analysis to model PTSD and trauma severity using the brain shapes representedviaPCs and in conjunction with auxiliary exposure variables. We apply our method to data from the Grady Trauma Project (GTP), where the goal is to predict clinical measures of PTSD. The framework seamlessly integrates accurate morphological features and other clinical covariates to yield superior predictive performance when modeling PTSD outcomes. Compared to vertex-wise analysis and other widely applied shape analysis methods, the elastic shape analysis approach results in considerably higher reconstruction accuracy for the brain shape and reveals significantly greater predictive power. It also helps identify local deformations in brain shapes associated with PTSD severity.
more »
« less
- Award ID(s):
- 1953087
- PAR ID:
- 10467537
- Publisher / Repository:
- Frontiers in Neuroscience
- Date Published:
- Journal Name:
- Frontiers in Neuroscience
- Volume:
- 16
- ISSN:
- 1662-453X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary We propose a curve-based Riemannian geometric approach for general shape-based statistical analyses of tumours obtained from radiologic images. A key component of the framework is a suitable metric that enables comparisons of tumour shapes, provides tools for computing descriptive statistics and implementing principal component analysis on the space of tumour shapes and allows for a rich class of continuous deformations of a tumour shape. The utility of the framework is illustrated through specific statistical tasks on a data set of radiologic images of patients diagnosed with glioblastoma multiforme, a malignant brain tumour with poor prognosis. In particular, our analysis discovers two patient clusters with very different survival, subtype and genomic characteristics. Furthermore, it is demonstrated that adding tumour shape information to survival models containing clinical and genomic variables results in a significant increase in predictive power.more » « less
-
Stephanidis, Constantine; Chen, Jessie Y.; Fragomeni, Gino (Ed.)Post-traumatic stress disorder (PTSD) is a mental health condition affecting people who experienced a traumatic event. In addition to the clinical diagnostic criteria for PTSD, behavioral changes in voice, language, facial expression and head movement may occur. In this paper, we demonstrate how a machine learning model trained on a general population with self-reported PTSD scores can be used to provide behavioral metrics that could enhance the accuracy of the clinical diagnosis with patients. Both datasets were collected from a clinical interview conducted by a virtual agent (SimSensei) [10]. The clinical data was recorded from PTSD patients, who were victims of sexual assault, undergoing a VR exposure therapy. A recurrent neural network was trained on verbal, visual and vocal features to recognize PTSD, according to self-reported PCL-C scores [4]. We then performed decision fusion to fuse three modalities to recognize PTSD in patients with a clinical diagnosis, achieving an F1-score of 0.85. Our analysis demonstrates that machine-based PTSD assessment with self-reported PTSD scores can generalize across different groups and be deployed to assist diagnosis of PTSD.more » « less
-
Post-traumatic stress disorder (PTSD) is a serious public health issue. Approximately 8 million adults in the United States suffer from PTSD in any given year, and 7–8% of the U.S. population will have PTSD at some point in their lives. Recent studies have explored eHealth technologies to support persons living with PTSD. However, current approaches are often unable to sustain adherence, leading to sub-optimal clinical outcomes. Conversational agents (CAs) can help to improve longitudinal adherence by interactively engaging users and maintaining social presence. In this work, we present prototypes of PTSDialogue — a finite-state CA to deliver evidence-based strategies and support self-management for individuals living with PTSD. We also discuss the design requirements and process of adapting existing eHealth content to interactive dialogues. Furthermore, we detail design decisions to address safety and ethical concerns to develop a CA for a vulnerable population.more » « less
-
Abstract The neurophysiological mechanisms in the human amygdala that underlie post-traumatic stress disorder (PTSD) remain poorly understood. In a first-of-its-kind pilot study, we recorded intracranial electroencephalographic data longitudinally (over one year) in two male individuals with amygdala electrodes implanted for the management of treatment-resistant PTSD (TR-PTSD) under clinical trial NCT04152993. To determine electrophysiological signatures related to emotionally aversive and clinically relevant states (trial primary endpoint), we characterized neural activity during unpleasant portions of three separate paradigms (negative emotional image viewing, listening to recordings of participant-specific trauma-related memories, and at-home-periods of symptom exacerbation). We found selective increases in amygdala theta (5–9 Hz) bandpower across all three negative experiences. Subsequent use of elevations in low-frequency amygdala bandpower as a trigger for closed-loop neuromodulation led to significant reductions in TR-PTSD symptoms (trial secondary endpoint) following one year of treatment as well as reductions in aversive-related amygdala theta activity. Altogether, our findings provide early evidence that elevated amygdala theta activity across a range of negative-related behavioral states may be a promising target for future closed-loop neuromodulation therapies in PTSD.more » « less
An official website of the United States government

