skip to main content

Title: Predicting Treatment Outcome in Spinal Cord Stimulation with EEG
Introduction: Back pain is one of the most common causes of pain in the United States. Spinal cord stimulation (SCS) is an intervention for patients with chronic back pain (CBP). However, SCS decreases pain in only 58% of patients and relies on self-reported pain scores as outcome measures. An SCS trial is temporarily implanted for seven days and helps to determine if a permanent SCS is needed. Patients that have a >50% reduction in pain from the trial stimulator makes them eligible for permanent implantation. However, self-reported measures reveal little on how mechanisms in the brain are altered. Other measurements of pain intensity, onset, medication, disabilities, depression, and anxiety have been used with machine learning to predict outcomes with accuracies <70%. We aim to predict long-term SCS responders at 6-months using baseline resting EEG and machine learning. Materials and Methods: We obtained 10-minutes of resting electroencephalography (EEG) and pain questionnaires from nine participants with CBP at two time points: 1) pre-trial baseline. 2) Six months after SCS permanent implant surgery. Subjects were designated as high or moderate responders based on the amount of pain relief provided by the long-term (post six months) SCS, and pain scored on a scale of 0-10 more » with 0 being no pain and 10 intolerable. We used the resting EEG from baseline to predict long-term treatment outcome. Resting EEG data was fed through a pipeline for classification and to map dipole sources. EEG signals were preprocessed using the EEGLAB toolbox. Independent component analysis and dipole fitting were used to linearly unmix the signal and to map dipole sources from the brain. Spectral analysis was performed to obtain the frequency distribution of the signal. Each power band, delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz), as well as the entire spectrum (1-100 Hz), were used for classification. Furthermore, dipole sources were ranked based on classification feature weights to determine the significance of specific regions in the brain. We used support vector machines to predict pain outcomes. Results and Discussion: We found higher frequency powerbands provide overall classification performance of 88.89%. Differences in power are seen between moderate and high responders in both the frontal and parietal regions for theta, alpha, beta, and the entire spectrum (Fig.1). This can potentially be used to predict patient response to SCS. Conclusions: We found evidence of decreased power in theta, alpha, beta, and entire spectrum in the anterior regions of the parietal cortex and posterior regions of the frontal cortex between moderate and high responders, which can be used for predicting treatment outcomes in long-term pain relief from SCS. Long-term treatment outcome prediction using baseline EEG data has the potential to contribute to decision making in terms of permanent surgery, forgo trial periods, and improve clinical efficiency by beginning to understand the mechanism of action of SCS in the human brain. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Biomedical Engineering Society Annual Meeting
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT IMPACT: Understanding how spinal cord stimulation works and who it works best for will improve clinical trial efficacy and prevent unnecessary surgeries. OBJECTIVES/GOALS: Spinal cord stimulation (SCS) is an intervention for chronic low back pain where standard interventions fail to provide relief. However, estimates suggest only 58% of patients achieve at least 50% reduction in their pain. There is no non-invasive method for predicting relief provided by SCS. We hypothesize neural activity in the brain can fill this gap. METHODS/STUDY POPULATION: We tested SCS patients at 3 times points: baseline (pre-surgery), at day 7 during the trial period (post-trial), and 6 months after a permanent system had been implanted. At each time point participants completed 10 minutes of eyes closed, resting electroencephalography (EEG) and self-reported their pain. EEG was collected with the ActiveTwo system and a 128-electrode cap. Patients were grouped based on the percentage change of their pain from baseline to the final visit using a median split (super responders > average responders). Spectral density powerbands were extracted from resting EEG to use as input features for machine learning analyses. We used support vector machines to predict response to SCS. RESULTS/ANTICIPATED RESULTS: Baseline and post-trial EEG data predictedmore »SCS response at 6-months with 95.56% and 100% accuracy, respectively. The gamma band had the highest performance in differentiating responders. Post-trial EEG data best differentiated the groups with feature weighted dipoles being more highly localized in sensorimotor cortex. DISCUSSION/SIGNIFICANCE OF FINDINGS: Understanding how SCS works and who it works best for is the long-term objective of our collaborative research program. These data provide an important first step towards this goal.« less
  2. OBJECTIVES/GOALS: Spinal cord stimulation (SCS) is an intervention for patients with chronic back pain. Technological advances have led to renewed optimism in the field, but mechanisms of action in the brain remain poorly understood. We hypothesize that SCS outcomes will be associated with changes in neural oscillations. METHODS/STUDY POPULATION: The goal of our team project is to test patients who receive SCS at 3 times points: baseline, at day 7 during the trial period, and day 180 after a permanent system has been implanted. At each time point participants will complete 10 minutes of eyes closed, resting electroencephalography (EEG). EEG will be collected with the ActiveTwo system, a 128-electrode cap, and a 256 channel AD box from BioSemi. Traditional machine learning methods such as support vector machine and more complex models including deep learning will be used to generate interpretable features within resting EEG signals. RESULTS/ANTICIPATED RESULTS: Through machine learning, we anticipate that SCS will have a significant effect on resting alpha and beta power in sensorimotor cortex. DISCUSSION/SIGNIFICANCE OF IMPACT: This collaborative project will further the application of machine learning in cognitive neuroscience and allow us to better understand how therapies for chronic pain alter resting brain activity.
  3. This paper describes a group-level classification of 14 patients with prefrontal cortex (pFC) lesions from 20 healthy controls using multi-layer graph convolutional networks (GCN) with features inferred from the scalp EEG recorded from the encoding phase of working memory (WM) trials. We first construct undirected and directed graphs to represent the WM encoding for each trial for each subject using distance correlation- based functional connectivity measures and differential directed information-based effective connectivity measures, respectively. Centrality measures of betweenness centrality, eigenvector centrality, and closeness centrality are inferred for each of the 64 channels from the brain connectivity. Along with the three centrality measures, each graph uses the relative band powers in the five frequency bands - delta, theta, alpha, beta, and gamma- as node features. The summarized graph representation is learned using two layers of GCN followed by mean pooling, and fully connected layers are used for classification. The final class label for a subject is decided using majority voting based on the results from all the subject's trials. The GCN-based model can correctly classify 28 of the 34 subjects (82.35% accuracy) with undirected edges represented by functional connectivity measure of distance correlation and classify all 34 subjects (100% accuracy) withmore »directed edges characterized by effective connectivity measure of differential directed information.« less
  4. Objectively differentiating patient mental states based on electrical activity, as opposed to overt behavior, is a fundamental neuroscience problem with medical applications, such as identifying patients in locked-in state vs. coma. Electroencephalography (EEG), which detects millisecond-level changes in brain activity across a range of frequencies, allows for assessment of external stimulus processing by the brain in a non-invasive manner. We applied machine learning methods to 26-channel EEG data of 24 fluent Deaf signers watching videos of sign language sentences (comprehension condition), and the same videos reversed in time (non-comprehension condition), to objectively separate vision-based high-level cognition states. While spectrotemporal parameters of the stimuli were identical in comprehension vs. non-comprehension conditions, the neural responses of participants varied based on their ability to linguistically decode visual data. We aimed to determine which subset of parameters (specific scalp regions or frequency ranges) would be necessary and sufficient for high classification accuracy of comprehension state. Optical flow, characterizing distribution of velocities of objects in an image, was calculated for each pixel of stimulus videos using MATLAB Vision toolbox. Coherence between optical flow in the stimulus and EEG neural response (per video, per participant) was then computed using canonical component analysis with NoiseTools toolbox. Peakmore »correlations were extracted for each frequency for each electrode, participant, and video. A set of standard ML algorithms were applied to the entire dataset (26 channels, frequencies from .2 Hz to 12.4 Hz, binned in 1 Hz increments), with consistent out-of-sample 100% accuracy for frequencies in .2-1 Hz range for all regions, and above 80% accuracy for frequencies < 4 Hz. Sparse Optimal Scoring (SOS) was then applied to the EEG data to reduce the dimensionality of the features and improve model interpretability. SOS with elastic-net penalty resulted in out-of-sample classification accuracy of 98.89%. The sparsity pattern in the model indicated that frequencies between 0.2–4 Hz were primarily used in the classification, suggesting that underlying data may be group sparse. Further, SOS with group lasso penalty was applied to regional subsets of electrodes (anterior, posterior, left, right). All trials achieved greater than 97% out-of-sample classification accuracy. The sparsity patterns from the trials using 1 Hz bins over individual regions consistently indicated frequencies between 0.2–1 Hz were primarily used in the classification, with anterior and left regions performing the best with 98.89% and 99.17% classification accuracy, respectively. While the sparsity pattern may not be the unique optimal model for a given trial, the high classification accuracy indicates that these models have accurately identified common neural responses to visual linguistic stimuli. Cortical tracking of spectro-temporal change in the visual signal of sign language appears to rely on lower frequencies proportional to the N400/P600 time-domain evoked response potentials, indicating that visual language comprehension is grounded in predictive processing mechanisms.« less
  5. Abstract

    Objective. Understanding neural activity patterns in the developing brain remains one of the grand challenges in neuroscience. Developing neural networks are likely to be endowed with functionally important variability associated with the environmental context, age, gender, and other variables. Therefore, we conducted experiments with typically developing children in a stimulating museum setting and tested the feasibility of using deep learning techniques to help identify patterns of brain activity associated with different conditions.Approach. A four-channel dry EEG-based Mobile brain-body imaging data of children at rest and during videogame play (VGP) was acquired at the Children’s Museum of Houston. A data-driven approach based on convolutional neural networks (CNN) was used to describe underlying feature representations in the EEG and their ability to discern task and gender. The variability of the spectral features of EEG during the rest condition as a function of age was also analyzed.Main results. Alpha power (7–13 Hz) was higher during rest whereas theta power (4–7 Hz) was higher during VGP. Beta (13–18 Hz) power was the most significant feature, higher in females, when differentiating between males and females. Using data from both temporoparietal channels to classify between VGP and rest condition, leave-one-subject-out cross-validation accuracy of 67% wasmore »obtained. Age-related changes in EEG spectral content during rest were consistent with previous developmental studies conducted in laboratory settings showing an inverse relationship between age and EEG power.Significance. These findings are the first to acquire, quantify and explain brain patterns observed during VGP and rest in freely behaving children in a museum setting using a deep learning framework. The study shows how deep learning can be used as a data driven approach to identify patterns in the data and explores the issues and the potential of conducting experiments involving children in a natural and engaging environment.

    « less