skip to main content


Title: Detection Through Deep Neural Networks: A Reservoir Computing Approach for MIMO-OFDM Symbol Detection
The Reservoir Computing, a neural computing framework suited for temporal information processing, utilizes a dynamic reservoir layer for high-dimensional encoding, enhancing the separability of the network. In this paper, we exploit a Deep Learning (DL)-based detection strategy for Multiple-input, Multiple-output Orthogonal Frequency-Division Multiplexing (MIMO-OFDM) symbol detection. To be specific, we introduce a Deep Echo State Network (DESN), a unique hierarchical processing structure with multiple time intervals, to enhance the memory capacity and accelerate the detection efficiency. The resulting hardware prototype with the hybrid memristor-CMOS co-design provides in-memory computing and parallel processing capabilities, significantly reducing the hardware and power overhead. With the standard 180nm CMOS process and memristive synapses, the introduced DESN consumes merely 105mW of power consumption, exhibiting 16.7% power reduction compared to shallow ESN designs even with more dynamic layers and associated neurons. Furthermore, numerical evaluations demonstrate the advantages of the DESN over state-of-the-art detection techniques in the literate for MIMO-OFDM systems even with a very limited training set, yielding a 47.8% improvement against conventional symbol detection techniques.  more » « less
Award ID(s):
1750450 1937487
NSF-PAR ID:
10209057
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE International Conference on Computer-Aided Design
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we introduce a deep spiking delayed feedback reservoir (DFR) model to combine DFR with spiking neuros: DFRs are a new type of recurrent neural networks (RNNs) that are able to capture the temporal correlations in time series while spiking neurons are energy-efficient and biologically plausible neurons models. The introduced deep spiking DFR model is energy-efficient and has the capability of analyzing time series signals. The corresponding field programmable gate arrays (FPGA)-based hardware implementation of such deep spiking DFR model is introduced and the underlying energy-efficiency and recourse utilization are evaluated. Various spike encoding schemes are explored and the optimal spike encoding scheme to analyze the time series has been identified. To be specific, we evaluate the performance of the introduced model using the spectrum occupancy time series data in MIMO-OFDM based cognitive radio (CR) in dynamic spectrum sharing (DSS) networks. In a MIMO-OFDM DSS system, available spectrum is very scarce and efficient utilization of spectrum is very essential. To improve the spectrum efficiency, the first step is to identify the frequency bands that are not utilized by the existing users so that a secondary user (SU) can use them for transmission. Due to the channel correlation as well as users' activities, there is a significant temporal correlation in the spectrum occupancy behavior of the frequency bands in different time slots. The introduced deep spiking DFR model is used to capture the temporal correlation of the spectrum occupancy time series and predict the idle/busy subcarriers in future time slots for potential spectrum access. Evaluation results suggest that our introduced model achieves higher area under curve (AUC) in the receiver operating characteristic (ROC) curve compared with the traditional energy detection-based strategies and the learning-based support vector machines (SVMs). 
    more » « less
  2. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  3. With the success of deep neural networks (DNN), many recent works have been focusing on developing hardware accelerator for power and resource-limited embedded system via model compression techniques, such as quantization, pruning, low-rank approximation, etc. However, almost all existing DNN structure is fixed after deployment, which lacks runtime adaptive DNN structure to adapt to its dynamic hardware resource, power budget, throughput requirement, as well as dynamic workload. Correspondingly, there is no runtime adaptive hardware platform to support dynamic DNN structure. To address this problem, we first propose a dynamic channel-adaptive deep neural network (CA-DNN) which can adjust the involved convolution channel (i.e. model size, computing load) at run-time (i.e. at inference stage without retraining) to dynamically trade off between power, speed, computing load and accuracy. Further, we utilize knowledge distillation method to optimize the model and quantize the model to 8-bits and 16-bits, respectively, for hardware friendly mapping. We test the proposed model on CIFAR-10 and ImageNet dataset by using ResNet. Comparing with the same model size of individual model, our CA-DNN achieves better accuracy. Moreover, as far as we know, we are the first to propose a Processing-in-Memory accelerator for such adaptive neural networks structure based on Spin Orbit Torque Magnetic Random Access Memory(SOT-MRAM) computational adaptive sub-arrays. Then, we comprehensively analyze the trade-off of the model with different channel-width between the accuracy and the hardware parameters, eg., energy, memory, and area overhead. 
    more » « less
  4. In this paper, we introduce a neural network (NN)-based symbol detection scheme for Wi-Fi systems and its associated hardware implementation in software radios. To be specific, reservoir computing (RC), a special type of recurrent neural network (RNN), is adopted to conduct the task of symbol detection for Wi-Fi receivers. Instead of introducing extra training overhead/set to facilitate the RC-based symbol detection, a new training framework is introduced to take advantage of the signal structure in existing Wi-Fi protocols (e.g., IEEE 802.11 standards), that is, the introduced RC-based symbol detector will utilize the inherent long/short training sequences and structured pilots sent by the Wi-Fi transmitter to conduct online learning of the transmit symbols. In other words, our introduced NN-based symbol detector does not require any additional training sets compared to existing Wi-Fi systems. The introduced RC-based Wi-Fi symbol detector is implemented on the software-defined radio (SDR) platform to further provide realistic and meaningful performance comparisons against the traditional Wi-Fi receiver. Over the air, experiment results show that the introduced RC based Wi-Fi symbol detector outperforms conventional Wi-Fi symbol detection methods in various environments indicating the significance and the relevance of our work. 
    more » « less
  5. Exploiting (near-)optimal MIMO signal processing algorithms in the next generation (NextG) cellular systems holds great promise in achieving significant wireless performance gains in spectral efficiency and device connectivity, to name a few. However, it is extremely difficult to enable optimal processing methods in the systems, since the required computational amount increases exponentially with more users and higher data rates, while available processing time is strictly limited. In this regard, quantum signal processing has been recently identified as a promising potential enabler of the (near-)optimal algorithms in the systems, since quantum computing could dramatically speed up the computation via non-conventional effects based on quantum mechanics. Given existing quantum decoherence and noise on quantum hardware, parallel quantum optimization could accelerate the process even further at the expense of more qubit usage. In this paper, we discuss the parallelization of quantum MIMO processing and investigate a spin-level preprocessing method for relatively finer-grained decomposition that can support more flexible parallel quantum signal processing, compared to the recently reported symbol-level decomposition method. We evaluate the method on the state-of-the-art analog D-Wave Advantage quantum processor. 
    more » « less