skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Gaussian latent variable model for incomplete mixed type data
In many machine learning problems, one has to work with data of different types, including continuous, discrete, and categorical data. Further, it is often the case that many of these data are missing from the database. This paper proposes a Gaussian process framework that efficiently captures the information from mixed numerical and categorical data that effectively incorporates missing variables. First, we propose a generative model for the mixed-type data. The generative model exploits Gaussian processes with kernels constructed from the latent vectors. We also propose a method for inference of the unknowns, and in its implementation, we rely on a sparse spectrum approximation of the Gaussian processes and variational inference. We demonstrate the performance of the method for both supervised and unsupervised tasks. First, we investigate the imputation of missing variables in an unsupervised setting, and then we show the results of joint imputation and classification on IBM employee data.  more » « less
Award ID(s):
2212506
PAR ID:
10417055
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Conference record IEEE International Conference on Acoustics Speech and Signal Processing
ISSN:
0749-842X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Scientific and engineering problems often require the use of artificial intelligence to aid understanding and the search for promising designs. While Gaussian processes (GP) stand out as easy-to-use and interpretable learners, they have difficulties in accommodating big data sets, categorical inputs, and multiple responses, which has become a common challenge for a growing number of data-driven design applications. In this paper, we propose a GP model that utilizes latent variables and functions obtained through variational inference to address the aforementioned challenges simultaneously. The method is built upon the latent-variable Gaussian process (LVGP) model where categorical factors are mapped into a continuous latent space to enable GP modeling of mixed-variable data sets. By extending variational inference to LVGP models, the large training data set is replaced by a small set of inducing points to address the scalability issue. Output response vectors are represented by a linear combination of independent latent functions, forming a flexible kernel structure to handle multiple responses that might have distinct behaviors. Comparative studies demonstrate that the proposed method scales well for large data sets with over 104 data points, while outperforming state-of-the-art machine learning methods without requiring much hyperparameter tuning. In addition, an interpretable latent space is obtained to draw insights into the effect of categorical factors, such as those associated with “building blocks” of architectures and element choices in metamaterial and materials design. Our approach is demonstrated for machine learning of ternary oxide materials and topology optimization of a multiscale compliant mechanism with aperiodic microstructures and multiple materials. 
    more » « less
  2. Deep Learning (DL) methods have dramatically increased in popularity in recent years. While its initial success was demonstrated in the classification and manipulation of image data, there has been significant growth in the application of DL methods to problems in the biomedical sciences. However, the greater prevalence and complexity of missing data in biomedical datasets present significant challenges for DL methods. Here, we provide a formal treatment of missing data in the context of Variational Autoencoders (VAEs), a popular unsupervised DL architecture commonly used for dimension reduction, imputation, and learning latent representations of complex data. We propose a new VAE architecture, NIMIWAE, that is one of the first to flexibly account for both ignorable and non-ignorable patterns of missingness in input features at training time. Following training, samples can be drawn from the approximate posterior distribution of the missing data can be used for multiple imputation, facilitating downstream analyses on high dimensional incomplete datasets. We demonstrate through statistical simulation that our method outperforms existing approaches for unsupervised learning tasks and imputation accuracy. We conclude with a case study of an EHR dataset pertaining to 12,000 ICU patients containing a large number of diagnostic measurements and clinical outcomes, where many features are only partially observed. 
    more » « less
  3. Wearable devices that have low-power sensors, processors, and communication capabilities are gaining wide adoption in several health applications. The machine learning algorithms on these devices assume that data from all sensors are available during runtime. However, data from one or more sensors may be unavailable due to energy or communication challenges. This loss of sensor data can result in accuracy degradation of the application. Prior approaches to handle missing data, such as generative models or training multiple classifiers for each combination of missing sensors are not suitable for low-energy wearable devices due to their high overhead at runtime. In contrast to prior approaches, we present an energy-efficient approach, referred to as Sensor-Aware iMputation (SAM), to accurately impute missing data at runtime and recover application accuracy. SAM first uses unsupervised clustering to obtain clusters of similar sensor data patterns. Next, it learns inter-relationship between clusters to obtain imputation patterns for each combination of clusters using a principled sensor-aware search algorithm. Using sensor data for clustering before choosing imputation patterns ensures that the imputation isawareof sensor data observations. Experiments on seven diverse wearable sensor-based time-series datasets demonstrate that SAM is able to maintain accuracy within 5% of the baseline with no missing data when one sensor is missing. We also compare SAM against generative adversarial imputation networks (GAIN), transformers, and k-nearest neighbor methods. Results show that SAM outperforms all three approaches on average by more than 25% when two sensors are missing with negligible overhead compared to the baseline. 
    more » « less
  4. Abstract Multiple imputation (MI) is a popular and well-established method for handling missing data in multivariate data sets, but its practicality for use in massive and complex data sets has been questioned. One such data set is the Panel Study of Income Dynamics (PSID), a longstanding and extensive survey of household income and wealth in the United States. Missing data for this survey are currently handled using traditional hot deck methods because of the simple implementation; however, the univariate hot deck results in large random wealth fluctuations. MI is effective but faced with operational challenges. We use a sequential regression/chained-equation approach, using the software IVEware, to multiply impute cross-sectional wealth data in the 2013 PSID, and compare analyses of the resulting imputed data with those from the current hot deck approach. Practical difficulties, such as non-normally distributed variables, skip patterns, categorical variables with many levels, and multicollinearity, are described together with our approaches to overcoming them. We evaluate the imputation quality and validity with internal diagnostics and external benchmarking data. MI produces improvements over the existing hot deck approach by helping preserve correlation structures, such as the associations between PSID wealth components and the relationships between the household net worth and sociodemographic factors, and facilitates completed data analyses with general purposes. MI incorporates highly predictive covariates into imputation models and increases efficiency. We recommend the practical implementation of MI and expect greater gains when the fraction of missing information is large. 
    more » « less
  5. Abstract Imputation is a popular technique for handling item nonresponse. Parametric imputation is based on a parametric model for imputation and is not robust against the failure of the imputation model. Nonparametric imputation is fully robust but is not applicable when the dimension of covariates is large due to the curse of dimensionality. Semiparametric imputation is another robust imputation based on a flexible model where the number of model parameters can increase with the sample size. In this paper, we propose a new semiparametric imputation based on a more flexible model assumption than the Gaussian mixture model. In the proposed mixture model, we assume a conditional Gaussian model for the study variable given the auxiliary variables, but the marginal distribution of the auxiliary variables is not necessarily Gaussian. The proposed mixture model is more flexible and achieves a better approximation than the Gaussian mixture models. The proposed method is applicable to high‐dimensional covariate problem by including a penalty function in the conditional log‐likelihood function. The proposed method is applied to the 2017 Korean Household Income and Expenditure Survey conducted by Statistics Korea. 
    more » « less