skip to main content


Title: Recent research in the Bladen nature reserve: the preceramic occupations of Mayahak Cab Pek and Saki Tzul rockshelters
From the perspective of Central America, the peopling of the New World was a complex process lasting thousands of years and involving multiple waves of migration in the late Pleistocene and early Holocene periods. As the ice age ended across the New World people were adapting to changing environments and resources. In the Neotropics these changes would have been pronounced as patchy forests and grasslands gave way to broadleaf tropical forests. Investigations since 2014 are demonstrating that early Holocene humans lived, hunted, and were buried in and around rockshelters in the Bladen Nature Reserve. Data from these studies are illuminating the life histories and subsistence strategies of these earliest colonists of the lowland tropics  more » « less
Award ID(s):
1632061
NSF-PAR ID:
10209129
Author(s) / Creator(s):
Date Published:
Journal Name:
Research reports in Belizean archaeology
Volume:
17
ISSN:
2079-1038
Page Range / eLocation ID:
199-208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Ongoing and future anthropogenic climate change poses one of the greatest threats to biodiversity, affecting species distributions and ecological interactions. In the Amazon, climatic changes are expected to induce warming, disrupt precipitation patterns and of particular concern, to increase the intensity and frequency of droughts. Yet the response of ecosystems to intense warm, dry events is not well understood. In the Andes the mid‐Holocene dry event (MHDE),c. 9,000 to 4,000 years ago, was the warmest and driest period of the last 100,000 years which coincided with changes in evaporation and precipitation that caused lake levels to drop over most of tropical South America. This event probably approximates our near‐climatic future, and a critical question is:How much did vegetation change in response to this forcing?

    Location

    Lake Pata, Brazilian Western Amazonia.

    Taxon

    Terrestrial and aquatic plants.

    Methods

    We used pollen, charcoal, total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N data from a new high‐resolution core that spans the lastc. 7,600 years history of Lake Pata.

    Results

    We found that in the wettest section of Amazonia changes associated with the MHDE were detected in the geochemistry analysis but that vegetation changed very little in response to drought during the Holocene. This is the first high‐resolution core without apparent hiatuses that spans most of the Holocene (last 7,600 cal yrbp) from Lake Pata, Brazil. Changes in the organic geochemistry of sediments indicated that between c. 6,500 and 3,600 cal yrbplake levels dropped. Vegetation, however, showed little change as near‐modern forests were seen throughout the record, evidencing the substantial resilience of this system. Only a few species replacements and minor fluctuations in abundance were observed in the pollen record.

    Main conclusions

    The mid‐Holocene warming and reduced precipitation had a limited impact on western Amazonian forests. We attribute much of the resilience to a lack of fire in this system, and that if human‐set fires were to be introduced, the forest destruction from that cause would override that induced by climate alone.

     
    more » « less
  2. Abstract

    People have modified landscapes throughout the Holocene (the lastc. 11,700 years) by modifying soils, burning forests, cultivating and domesticating plants, and directly and indirectly enriched and depleted plant abundances. These activities also took place in Amazonia, which is the largest contiguous piece of rainforest in the world, and for many decades was considered to have very little human impact until the modern era.

    The compositional shift caused by past human disturbances can alter forest traits, creating ecological legacies that may persist through time. As the lifespan of most Amazonian tree species is more than 200 years, forests that were modified over the last centuries to millennia are likely still in a mid‐successional state.

    Ecological legacies resulting from past human activity may also affect modern forest resilience to ongoing anthropogenic and climatic changes.

    Current estimates of resilience assume that forests are in equilibrium, and long‐term successional trajectories are not considered.

    We suggest that disturbance histories, generated through palaeoecological and archaeological surveys, should be paired with field‐based and remotely sensed estimates of forest resilience to recent drought events, to determine whether past human activities affect modern forest resilience. We have outlined how this can be accomplished in future research.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Abstract Aim

    We analysed a dataset composed of multiple palaeoclimate and lake‐sediment pollen records from New England to explore how postglacial changes in the composition and spatial patterns of vegetation were controlled by regional‐scale climate change, a subregional environmental gradient, and landscape‐scale variations in soil characteristics.

    Location

    The 120,000‐km2study area includes parts of Vermont and New Hampshire in the north, where sites are 150–200 km from the Atlantic Ocean, and spans the coastline from southeastern New York to Cape Cod and the adjacent islands, including Block Island, the Elizabeth Islands, Nantucket, and Martha's Vineyard.

    Methods

    We analysed pollen records from 29 study sites, using multivariate cluster analysis to visualize changes in the composition and spatial patterns of vegetation during the last 14,000 years. The pollen data were compared with temperature and precipitation reconstructions.

    Results

    Boreal forest featuringPiceaandPinus banksianawas present across the region when conditions were cool and dry 14,000–12,000 calibrated14C years before present (ybp).Pinus strobusbecame regionally dominant as temperatures increased between 12,000 and 10,000 ybp. The composition of forests in inland and coastal areas diverged in response to further warming after 10,000 ybp, whenQuercusandPinus rigidaexpanded across southern New England, whereas conditions remained cool enough in inland areas to maintainPinus strobus. Increasing precipitation allowedTsuga canadensis,Fagus grandifolia, andBetulato replacePinus strobusin inland areas during 9,000–8,000 ybp, and also led to the expansion ofCaryaacross the coastal part of the region beginning at 7,000–6,000 ybp. Abrupt cooling at 5,500–5,000 ybp caused sharp declines inTsugain inland areas andQuercusat some coastal sites, and the populations of those taxa remained low until they recovered around 3,000 ybp in response to rising precipitation. Throughout most of the Holocene, sites underlain by sandy glacial deposits were occupied byPinus rigidaandQuercus.

    Main conclusions

    Postglacial changes in the composition and spatial pattern of New England forests were controlled by long‐term trends and abrupt shifts in temperature and precipitation, as well as by the environmental gradient between coastal and inland parts of the region. Substrate and soil moisture shaped landscape‐scale variations in forest composition.

     
    more » « less
  4. The North Atlantic was a key locus for circulation-driven abrupt climate change in the past and could play a similar role in the future. Abrupt cold reversals, including the 8.2 ka event, punctuated the otherwise warm early Holocene in the North Atlantic region and serve as useful paleo examples of rapid climate change. In this work, we assess the cryospheric response to early Holocene climate history on Baffin Island, Arctic Canada, using cosmogenic radionuclide dating of moraines. We present 39 new 10Be ages from four sets of multi-crested early Holocene moraines deposited by cirque glaciers and ice cap outlet glaciers, as well as erratic boulders along adjacent fiords to constrain the timing of regional deglaciation. The age of one moraine is additionally constrained by in situ 14C measurements, which confirm 10Be inheritance in some samples. All four moraines were deposited between ~9.2 and 8.0 ka, and their average ages coincide with abrupt coolings at 9.3 and 8.2 ka that are recorded in Greenland ice cores. Freshwater delivery to the North Atlantic that reduced the flux of warm Atlantic water into Baffin Bay may explain brief intervals of glacier advance, although moraine formation cannot be definitively tied to centennial-scale cold reversals. We thus explore other possible contributing factors, including ice dynamics related to retreat of Laurentide Ice Sheet outlet glaciers. Using a numerical glacier model, we show that the debuttressing effect of trunk valley deglaciation may have contributed to these morainebuilding events. These new age constraints and process insights highlight the complex behavior of the cryosphere during regional deglaciation and suggest that multiple abrupt cold reversalsdas well as deglacial ice dynamicsdlikely played a role in early Holocene moraine formation on Baffin Island. 
    more » « less
  5. Abstract

    The Holocene is considered a period of relative climatic stability, but significant proxy data‐model discrepancies exist that preclude consensus regarding the postglacial global temperature trajectory. In particular, a mid‐Holocene Climatic Optimum, ~9,000 to ~5,000 years BP, is evident in Northern Hemisphere marine sediment records, but its absence from model simulations raises key questions about the ability of the models to accurately simulate climate and seasonal biases that may be present in the proxy records. Here we present new mid‐Holocene sea surface temperature (SST) data from the western tropical Atlantic, where twentieth‐century temperature variability and amplitude of warming track the twentieth‐century global ocean. Using a new coral thermometer Sr‐U, we first developed a temporal Sr‐U SST calibration from three modern Atlantic corals and validated the calibration against Sr‐U time series from a fourth modern coral. Two fossil corals from the Enriquillo Valley, Dominican Republic, were screened for diagenesis, U‐series dated to 5,199 ± 26 and 6,427 ± 81 years BP, respectively, and analyzed for Sr/Ca and U/Ca, generating two annually resolved Sr‐U SST records, 27 and 17 years long, respectively. Average SSTs from both corals were significantly cooler than in early instrumental (1870–1920) and late instrumental (1965–2016) periods at this site, by ~0.5 and ~0.75 °C, respectively, a result inconsistent with the extended mid‐Holocene warm period inferred from sediment records. A more complete sampling of Atlantic Holocene corals can resolve this issue with confidence and address questions related to multidecadal and longer‐term variability in Holocene Atlantic climate.

     
    more » « less