skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Acetaminophen and caffeine removal by MnO x(s) and GAC media in column experiments
The objective of this study was to investigate the application of manganese oxide [MnO x(s) ] and granular activated carbon (GAC) media for the removal of caffeine and acetaminophen from water. Organic contaminants of emerging concern represent a developing issue due to their effects on human health and the environment. Manganese oxides are effective for water treatment because of their ability to mediate adsorption and oxidation–reduction reactions for many organic and inorganic constituents. Laboratory scale column experiments were performed using different combinations of commercial MnO x(s) and GAC for assessing the removal of caffeine and acetaminophen, and the subsequent release of soluble Mn due to the reductive dissolution of MnO x(s) . The removal of acetaminophen was detected for all media combinations investigated. However, the removal of caffeine by adsorption only occurred in columns containing GAC media. There was no removal of caffeine in columns containing only MnO x(s) media. Manganese release occurred in columns containing MnO x(s) media, but concentrations were below the secondary drinking water standard of 50 μg L −1 set by the US Environmental Protection Agency. Soluble Mn released from a first process by MnO x(s) media column was removed through adsorption into the GAC media used in a second process. The results of this investigation are relevant for implementation of MnO x(s) and GAC media combinations as an effective treatment process to remove organic contaminants from water.  more » « less
Award ID(s):
1914490
NSF-PAR ID:
10209152
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
Volume:
7
Issue:
1
ISSN:
2053-1400
Page Range / eLocation ID:
134 to 143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Surface interrogation scanning electrochemical microscopy (SI‐SECM) of two electrodeposited manganese‐based electrocatalysts, amorphous MnOxand perovskite CaMnO3, was used to investigate the manganese oxidation state relating to the oxygen evolution reaction (OER) under neutral conditions. The results indicate the amounts of MnIIIand MnIVspecies in MnOxand CaMnO3depend on potential. A MnVspecies was identified in both structures during the OER. Time‐delay titration of MnVfurther revealed that MnOxproduced two types of active sites with different OER reaction rates:kfast(MnOx)=1.21 s−1andkslow(MnOx)=0.24 s−1. In contrast, CaMnO3perovskites in which the MnVspecies formed at a less positive potential than that in MnOx, displayed only one kinetic behavior with a faster reaction rate of 1.72 s−1.

     
    more » « less
  2. Abstract

    Surface interrogation scanning electrochemical microscopy (SI‐SECM) of two electrodeposited manganese‐based electrocatalysts, amorphous MnOxand perovskite CaMnO3, was used to investigate the manganese oxidation state relating to the oxygen evolution reaction (OER) under neutral conditions. The results indicate the amounts of MnIIIand MnIVspecies in MnOxand CaMnO3depend on potential. A MnVspecies was identified in both structures during the OER. Time‐delay titration of MnVfurther revealed that MnOxproduced two types of active sites with different OER reaction rates:kfast(MnOx)=1.21 s−1andkslow(MnOx)=0.24 s−1. In contrast, CaMnO3perovskites in which the MnVspecies formed at a less positive potential than that in MnOx, displayed only one kinetic behavior with a faster reaction rate of 1.72 s−1.

     
    more » « less
  3. Landfill leachate contains high levels of dissolved organic nitrogen (DON) that can be detrimental to aquatic life and water quality because it promotes the growth of harmful algal blooms (HABs). This study used physicochemical treatment technologies such as Fenton treatment and Granular Activated Carbon (GAC) adsorption to assess the breakdown and removal of landfill leachate-induced DON. The physicochemical treatments were applied to effluents of two bioreactors treating blended wastewater and landfill leachate. Bioreactor-1 (R1) was fed with high organic landfill leachate, and bioreactor-2 (R2) was fed with low organic landfill leachate. For R1 effluent, the Fenton treatment removed 66±9.2% COD and 52.4±8.7% DON at an optimum dosage of 200mg/L H2O2 and 1000mg/L FeSO4.7H2O. On the other hand, GAC removed 94.4±4.9% COD and 85.9±4.6% DON at an optimum dosage of 10g/L GAC. For R2 effluent, the Fenton treatment removed 75.8±6.6% COD and 60.3±3.2% DON at an optimum dosage of 200mg/L H2O2 and 1000mg/L FeSO4.7H2O. On the contrary, GAC treatment removed 92.2±4.3% COD and 92.3±3.7% DON at an optimum dosage of 10g/L GAC. Moreover, fluorescence spectrophotometry combined with parallel factor analysis (PARAFAC) was employed to provide insight into the DON degradation mechanisms. The study found that Fenton treatment and GAC adsorption both can effectively reduce DON in landfill leachate. However, GAC treatment was superior to Fenton treatment in eliminating DON from landfill leachate, while Fenton treatment may convert DON into inorganic nitrogen. The study emphasizes properly handling landfill leachate to avoid nitrogen contamination and harmful algal blooms in aquatic ecosystems. 
    more » « less
  4. Anionic carboxylated cellulose nanofibers (CNF) are effective media to remove cationic contaminants from water. In this study, sustainable cationic CNF-based adsorbents capable of removing anionic contaminants were demonstrated using a simple approach. Specifically, the zero-waste nitro-oxidization process was used to produce carboxylated CNF (NOCNF), which was subsequently converted into a cationic scaffold by crosslinking with aluminum ions. The system, termed Al-CNF, is found to be effective for the removal of fluoride ions from water. Using the Langmuir isotherm model, the fluoride adsorption study indicates that Al-CNF has a maximum adsorption capacity of 43.3 mg/g, which is significantly higher than that of alumina-based adsorbents such as activated alumina (16.3 mg/g). The selectivity of fluoride adsorption in the presence of other anionic species (nitrate or sulfate) by Al-CNF at different pH values was also evaluated. The results indicate that Al-CNF can maintain a relatively high selectivity towards the adsorption of fluoride. Finally, the sequential applicability of using spent Al-CNF after the fluoride adsorption to further remove cationic contaminant such as Basic Red 2 dye was demonstrated. The low cost and relatively high adsorption capacity of Al-CNF make it suitable for practical applications in fluoride removal from water.

     
    more » « less
  5. Earth-abundant, cost-effective electrode materials are essential for sustainable rechargeable batteries and global decarbonization. Manganese dioxide (MnO2) and hard carbon both exhibit high structural and chemical tunability, making them excellent electrode candidates for batteries. Herein, we elucidate the impact of electrolytes on the cycling performance of commercial electrolytic manganese dioxide in Li chemistry. We leverage synchrotron X-ray analysis to discern the chemical state and local structural characteristics of Mn during cycling, as well as to quantify the Mn deposition on the counter electrode. By using an ether-based electrolyte instead of conventional carbonate electrolytes, we circumvent the formation of a surface Mn(II)-layer and Mn dissolution from LixMnO2. Consequently, we achieved an impressive ∼100% capacity retention for MnO2after 300 cycles at C/3. To create a lithium metal-lean full cell, we introduce hard carbon as the anode which is compatible with ether-based electrolytes. Commercial hard carbon delivers a specific capacity of ∼230 mAh g−1at 0.1 A g−1without plateau, indicating a surface-adsorption mechanism. The resulting manganese dioxide||hard carbon full cell exhibits stable cycling and high Coulombic efficiency. Our research provides a promising solution to develop cost-effective, scalable, and safe energy storage solutions using widely available manganese oxide and hard carbon materials.

     
    more » « less