skip to main content

Title: Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba
Abstract Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Basaltic watersheds such as those found in Iceland are thought to be important sites of CO2sequestration via silicate weathering. However, determining the magnitude of CO2uptake depends on accurately interpreting river chemistry. Here, we compile geochemical data from Iceland and use them to constrain weathering processes. Specifically, we use a newly developed inverse model to quantify solute supply from rain and hydrothermal fluids as well as allow for variable silicate end‐member compositions, solutes to be removed via secondary phase formation, and some Ca to be sourced from carbonate dissolution. While some of these processes have been considered previously, they have not been considered together allowing us to newly determine their relative contributions. We find that weathering in Iceland is incongruent in two ways. First, solute release from primary silicates is characterized by a higher proportion of Na than would be expected from bulk basalts, which may reflect preferential weathering or some contribution from rhyolites. This Na enrichment is further enhanced by preferential Mg and K uptake by secondary phases. No samples in our data set (n = 537) require carbonate dissolution even if isotopic data (δ26Mg,δ30Si,δ44Ca, and/or87Sr/86Sr) are included. While some carbonate weathering is allowable, silicate weathering likely dominates. The complexity we observe in Iceland underscores the need for inverse models to account for a wide range of processes and end‐members. Given that riverine fluxes from Iceland are more Na‐rich than expected for congruent basalt weathering, the characteristic timescale of CO2drawdown is likely affected.

    more » « less
  2. Abstract

    Early studies revealed relationships between barium (Ba), particulate organic carbon and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation.But, what controls the distribution of barium (Ba) in the oceans?Here, we investigated the Arctic Ocean Ba cycle through a one‐of‐a‐kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba ratio (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ∼50% of the dBa inventory (upper 500 m of the Arctic water column) was supplied by nonconservative inputs. Calculated areal dBa fluxes are up to 10 μmol m−2 day−1on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. The Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean‐derived waters and Baffin Bay‐derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a sedimentary remineralization and terrigenous sources (e.g., submarine groundwater discharge or fluvial particles) are contributors.

    more » « less
  3. High levels of methylmercury accumulation in marine biota are a concern throughout the Arctic, where coastal ocean ecosystems received large riverine inputs of mercury (Hg) (40 Mg⋅y −1 ) and sediment (20 Tg⋅y −1 ) during the last decade, primarily from major Russian rivers. Hg concentrations in fish harvested from these rivers have declined since the late 20th century, but no temporal data on riverine Hg, which is often strongly associated with suspended sediments, were previously available. Here, we investigate temporal trends in Russian river particulate Hg (PHg) and total suspended solids (TSS) to better understand recent changes in the Arctic Hg cycle and its potential future trajectories. We used 1,300 measurements of Hg in TSS together with discharge observations made by Russian hydrochemistry and hydrology monitoring programs to examine changes in PHg and TSS concentrations and fluxes in eight major Russian rivers between ca. 1975 and 2010. Due to decreases in both PHg concentrations (micrograms per gram) and TSS loads, annual PHg export declined from 47 to 7 Mg⋅y −1 overall and up to 92% for individual rivers. Modeling of atmospheric Hg deposition together with published inventories on reservoir establishment and industrial Hg release point to decreased pollution and sedimentation within reservoirs as predominant drivers of declining PHg export. We estimate that Russian rivers were the primary source of Hg to the Arctic Ocean in the mid to late 20th century. 
    more » « less
  4. In the southwestern United States, California (CA) is one of the most climatically sensitive regions given its low (≤250 mm/year) seasonal precipitation and its inherently variable hydroclimate, subject to large magnitude modulation. To reconstruct past climate change in CA, cave calcite deposits (stalagmites) have been utilized as an archive for environmentally sensitive proxies, such as stable isotope compositions (δ18O, δ13C) and trace element concentrations (e.g., Mg, Ba, Sr). Monitoring the cave and associated surface environments, the chemical evolution of cave drip-water, the calcite precipitated from the drip-water, and the response of these systems to seasonal variability in precipitation and temperature is imperative for interpreting stalagmite proxies. Here we present monitored drip-water and physical parameters at Lilburn Cave, Sequoia Kings Canyon National Park (Southern Sierra Nevada), CA, and measured trace element concentrations (Mg, Sr, Ba, Cu, Fe, Mn) and stable isotopic compositions (δ18O, δ2H) of drip-water and for calcite (δ18O) precipitated on glass substrates over a two-year period (November 2018 to February 2021) to better understand how chemical variability at this site is influenced by local and regional precipitation and temperature variability. Despite large variability in surface temperatures and precipitation amount and source region (North Pacific vs. subtropical Pacific), Lilburn Cave exhibits a constant cave environment year-round. At two of the three sites within the cave, drip-water δ18O and δ2H are influenced seasonally by evaporative enrichment. At a third collection site in the cave, the drip-water δ18O responds solely to precipitation δ18O variability. The Mg/Ca, Ba/Ca, and Sr/Ca ratios are seasonally responsive to prior calcite precipitation at all sites but minimally to water-rock interaction. Lastly, we examine the potential of trace metals (e.g., Mn2+and Cu2+as a geochemical proxy of recharge and find that variability in their concentrations has high potential to denote the onset of the rainy season in the study region. The drip-water composition is recorded in the calcite, demonstrating that stalagmites from Lilburn Cave, and potentially more regionally, could record seasonal variability in weather even during periods of substantially reduced rainfall.

    more » « less
  5. Abstract

    Riverine input of terrestrial dissolved organic matter (DOM) is an important component of the marine carbon cycle and drives net carbon dioxide production in coastal zones. DOM exports to the Arctic Ocean are likely to increase due to melting of permafrost and the Greenland Ice Sheet, but the quantity and quality of DOM exports from deglaciated watersheds in Greenland, as well as expected changes with future melting, are unknown. We compare DOM quantity and quality in Greenland over the melt seasons of 2017–2018 between two rivers directly draining the Greenland Ice Sheet (meltwater rivers) and four streams draining deglaciated catchments that are disconnected from the ice (nonglacial streams). We couple these data with discharge records to compare dissolved organic carbon (DOC) exports. DOM sources and quality differ significantly between watershed types: fluorescence characteristics and organic molar C:N ratios suggest that DOM from deglaciated watersheds is derived from terrestrial vegetation and soil organic matter, while that in glacial watersheds contains greater proportions of algal and/or freshly produced biomass and may be more reactive. DOC specific yield is similar for nonglacial streams (0.1–1.2 Mg/km2/year) compared to a glacial meltwater river (0.2–1.1 Mg/km2/year), despite orders of magnitude differences in instantaneous discharge. Upscaling based on land cover leads to an estimate of total DOC contributions from Greenland between 0.2 and 0.5 Tg/year, much of which is derived from deglaciated watersheds. These results suggest that future warming and ice retreat may increase DOC fluxes from Greenland with consequences for the Arctic carbon cycle.

    more » « less