skip to main content

Search for: All records

Award ID contains: 1736949

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models.
    Free, publicly-accessible full text available December 1, 2022
  2. Lyons, Timothy W ; Turchyn, Alexandra ; Reinhard, Chris (Ed.)
    In the modern marine environment, barium isotope (δ138Ba) variations are primarily driven by barite cycling – barite incorporates “light” Ba isotopes from solution, rendering the residual Ba reservoir enriched in “heavy” Ba isotopes by a complementary amount. Since the processes of barite precipitation and dissolution are vertically segregated and spatially heterogeneous, barite cycling drives systematic variations in the barium isotope composition of seawater and sediments. This Element examines these variations; evaluates their global, regional, local, and geological controls; and, explores how δ138Ba can be exploited to constrain the origin of enigmatic sedimentary sulfates and to study marine biogeochemistry over Earth’s history.