A<sc>bstract</sc> The requirement that particles propagate causally on non-trivial backgrounds implies interesting constraints on higher-derivative operators. This work is part of a systematic study of the positivity bounds derivable from time delays on shockwave backgrounds. First, we discuss shockwaves in field theory, which are infinitely boosted Coulomb-like field configurations. We show how a positive time delay implies positivity of four-derivative operators in scalar field theory and electromagnetism, consistent with the results derived using dispersion relations, and we comment on how additional higher-derivative operators could be included. We then turn to gravitational shockwave backgrounds. We compute the infinite boost limit of Reissner-Nordström black holes to derive charged shockwave backgrounds. We consider photons traveling on these backgrounds and interacting through four-derivative corrections to Einstein-Maxwell theory. The inclusion of gravity introduces a logarithmic term into the time delay that interferes with the straightforward bounds derivable in pure field theory, a fact consistent with CEMZ and with recent results from dispersion relations. We discuss two ways to extract a physically meaningful quantity from the logarithmic time delay — by introducing an IR cutoff, or by considering the derivative of the time delay — and comment on the bounds implied in each case. Finally, we review a number of additional shockwave backgrounds which might be of use in future applications, including spinning shockwaves, those in higher dimensions or with a cosmological constant, and shockwaves from boosted extended objects.
more »
« less
What Are Observables in Hamiltonian Einstein-Maxwell Theory?
Is change missing in Hamiltonian Einstein–Maxwell theory? Given the most common definition of observables (having weakly vanishing Poisson bracket with each first-class constraint), observables are constants of the motion and nonlocal. Unfortunately this definition also implies that the observables for massive electromagnetism with gauge freedom (‘Stueckelberg’) are inequivalent to those of massive electromagnetism without gauge freedom (‘Proca’). The alternative Pons–Salisbury–Sundermeyer definition of observables, aiming for Hamiltonian–Lagrangian equivalence, uses the gauge generator G, a tuned sum of first-class constraints, rather than each first-class constraint separately, and implies equivalent observables for equivalent massive electromagnetisms. For General Relativity, G generates 4-dimensional Lie derivatives for solutions. The Lie derivative compares different space-time points with the same coordinate value in different coordinate systems, like 1 a.m. summer time versus 1 a.m. standard time, so a vanishing Lie derivative implies constancy rather than covariance. Requiring equivalent observables for equivalent formulations of massive gravity confirms that G must generate the 4-dimensional Lie derivative (not 0) for observables. These separate results indicate that observables are invariant under internal gauge symmetries but covariant under external gauge symmetries, but can this bifurcated definition work for mixed theories such as Einstein–Maxwell theory? Pons, Salisbury and Shepley have studied G for Einstein–Yang–Mills. For Einstein–Maxwell, both 𝐹𝜇𝜈 and 𝑔𝜇𝜈 are invariant under electromagnetic gauge transformations and covariant (changing by a Lie derivative) under 4-dimensional coordinate transformations. Using the bifurcated definition, these quantities count as observables, as one would expect on non-Hamiltonian grounds.
more »
« less
- Award ID(s):
- 1734402
- PAR ID:
- 10209267
- Date Published:
- Journal Name:
- Foundations of physics
- Volume:
- 49
- ISSN:
- 1572-9516
- Page Range / eLocation ID:
- 786-796
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent advances in cell biology and experimental techniques using reconstituted cell extracts have generated significant interest in understanding how geometry and topology influence active fluid dynamics. In this work, we present a comprehensive continuum theory and computational method to explore the dynamics of active nematic fluids on arbitrary surfaces without topological constraints. The fluid velocity and nematic order parameter are represented as the sections of the complex line bundle of a two-manifold. We introduce the Levi–Civita connection and surface curvature form within the framework of complex line bundles. By adopting this geometric approach, we introduce a gauge-invariant discretization method that preserves the continuous local-to-global theorems in differential geometry. We establish a nematic Laplacian on complex functions that can accommodate fractional topological charges through the covariant derivative on the complex nematic representation. We formulate advection of the nematic field based on a unifying definition of the Lie derivative, resulting in a stable geometric semi-Lagrangian (sL) discretization scheme for transport by the flow. In general, the proposed surface-based method offers an efficient and stable means to investigate the influence of local curvature and global topology on the two-dimensional hydrodynamics of active nematic systems.more » « less
-
By using gravity/gauge correspondence, we employ an Einstein-Maxwell-Dilaton model to compute the equilibrium and out-of-equilibrium properties of a hot and baryon rich strongly coupled quark-gluon plasma. The family of 5-dimensional holographic black holes, which are constrained to mimic the lattice QCD equation of state at zero density, is used to investigate the temperature and baryon chemical potential dependence of the equation of state. We also obtained the baryon charge conductivity, and the bulk and shear viscosities with a particular focus on the behavior of these observables on top of the critical end point and the line of first order phase transition predicted by the model.more » « less
-
A<sc>bstract</sc> We show that the general charged, rotating black hole in five-dimensional Einstein-Maxwell theory has a singular extremal limit. Only the known analytic solutions with exactly zero charge or zero angular momenta have smooth extremal horizons. We also consider general black holes in five-dimensional Einstein-Maxwell-Chern-Simons theory, and show that they also have singular extremal limits except for one special value of the coefficient of the Chern-Simons term (the one fixed by supergravity). Combining this with earlier results showing that extremal black holes have singular horizons in four-dimensional general relativity with small higher derivative corrections, and in anti-de Sitter space with perturbed boundary conditions, one sees that smooth extremal horizons are indeed the exception and not the rule.more » « less
-
A<sc>bstract</sc> In our earlier work [1], we introduced a lattice Hamiltonian for Adjoint QCD2using staggered Majorana fermions. We found the gauge invariant space of states explicitly for the gauge group SU(2) and used them for numerical calculations of observables, such as the spectrum and the expectation value of the fermion bilinear. In this paper, we carry out a more in-depth study of our lattice model, extending it to any compact and simply-connected gauge groupG. We show how to find the gauge invariant space of states and use it to study various observables. We also use the lattice model to calculate the mixed ’t Hooft anomalies of Adjoint QCD2for arbitraryG. We show that the matrix elements of the lattice Hamiltonian can be expressed in terms of the Wigner 6j-symbols ofG. ForG= SU(3), we perform exact diagonalization for lattices of up to six sites and study the low-lying spectrum, the fermion bilinear condensate, and the string tension. We also show how to write the lattice strong coupling expansion for ground state energies and operator expectation values in terms of the Wigner 6j-symbols. For SU(3) we carry this out explicitly and find good agreement with the exact diagonalizations, and for SU(4) we give expansions that can be compared with future numerical studies.more » « less
An official website of the United States government

