A bstract Perturbations of massless fields in the Kerr-Newman black hole background enjoy a (“Love”) SL(2 , ℝ) symmetry in the suitably defined near zone approximation. We present a detailed study of this symmetry and show how the intricate behavior of black hole responses in four and higher dimensions can be understood from the SL(2 , ℝ) representation theory. In particular, static perturbations of four-dimensional black holes belong to highest weight SL(2 , ℝ) representations. It is this highest weight properety that forces the static Love numbers to vanish. We find that the Love symmetry is tightly connected to the enhanced isometries of extremal black holes. This relation is simplest for extremal charged spherically symmetric (Reissner-Nordström) solutions, where the Love symmetry exactly reduces to the isometry of the near horizon AdS 2 throat. For rotating (Kerr-Newman) black holes one is lead to consider an infinite-dimensional SL(2 , ℝ) ⋉ $$ \hat{\textrm{U}}{(1)}_{\mathcal{V}} $$ U ̂ 1 V extension of the Love symmetry. It contains three physically distinct subalgebras: the Love algebra, the Starobinsky near zone algebra, and the near horizon algebra that becomes the Bardeen-Horowitz isometry in the extremal limit. We also discuss other aspects of the Love symmetry, such as the geometric meaning of its generators for spin weighted fields, connection to the no-hair theorems, non-renormalization of Love numbers, its relation to (non-extremal) Kerr/CFT correspondence and prospects of its existence in modified theories of gravity.
more »
« less
On the vanishing of Love numbers for Kerr black holes
A bstract It was shown recently that the static tidal response coefficients, called Love numbers, vanish identically for Kerr black holes in four dimensions. In this work, we confirm this result and extend it to the case of spin-0 and spin-1 perturbations. We compute the static response of Kerr black holes to scalar, electromagnetic, and gravitational fields at all orders in black hole spin. We use the unambiguous and gauge-invariant definition of Love numbers and their spin-0 and spin-1 analogs as Wilson coefficients of the point particle effective field theory. This definition also allows one to clearly distinguish between conservative and dissipative response contributions. We demonstrate that the behavior of Kerr black hole responses to spin-0 and spin-1 fields is very similar to that of the spin-2 perturbations. In particular, static conservative responses vanish identically for spinning black holes. This implies that vanishing Love numbers are a generic property of black holes in four-dimensional general relativity. We also show that the dissipative part of the response does not vanish even for static perturbations due to frame-dragging.
more »
« less
- Award ID(s):
- 1915219
- PAR ID:
- 10237449
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2021
- Issue:
- 5
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract It is well known that asymptotically flat black holes in generalrelativity have a vanishing static, conservative tidal response. We show that this is a result of linearly realized symmetries governingstatic (spin 0,1,2)perturbations around black holes. The symmetries have a geometric origin: in the scalar case, they arise from the (E)AdS isometries of a dimensionally reduced black hole spacetime. Underlying the symmetries is a ladder structure which can be used to construct the full tower of solutions,and derive their general properties: (1) solutions that decay withradius spontaneously break the symmetries, and mustdiverge at the horizon;(2) solutions regular at the horizon respect the symmetries, andtake the form of a finite polynomial that grows with radius.Taken together, these two properties imply that static response coefficients — and in particular Love numbers — vanish. Moreover, property (1) is consistent with the absence of black holes with linear (perturbative) hair. We also discuss the manifestation of these symmetries in the effective point particle description of a black hole, showing explicitly that for scalar probesthe worldline couplings associated with a non-trivial tidal response and scalar hair must vanish in order for the symmetries to be preserved.more » « less
-
A bstract We study the near-zone symmetries of a massless scalar field on four-dimensional black hole backgrounds. We provide a geometric understanding that unifies various recently discovered symmetries as part of an SO(4 , 2) group. Of these, a subset are exact symmetries of the static sector and give rise to the ladder symmetries responsible for the vanishing of Love numbers. In the Kerr case, we compare different near-zone approximations in the literature, and focus on the implementation that retains the symmetries of the static limit. We also describe the relation to spin-1 and 2 perturbations.more » « less
-
Abstract In this note, we present a synopsis of geometric symmetries for (spin 0) perturbations around (4D) black holes and de Sitter space. For black holes, we focus on static perturbations, for which the (exact) geometric symmetries have the group structure of SO(1,3). The generators consist of three spatial rotations, and three conformal Killing vectors obeying a specialmelodiccondition. The static perturbation solutions form a unitary (principal series) representation of the group. The recently uncovered ladder symmetries follow from this representation structure; they explain the well-known vanishing of the black hole Love numbers. For dynamical perturbations around de Sitter space, the geometric symmetries are less surprising, following from the SO(1,4) isometry. As is known, the quasinormal solutions form a non-unitary representation of the isometry group. We provide explicit expressions for the ladder operators associated with this representation. In both cases, the ladder structures help connect the boundary condition at the horizon with that at infinity (black hole) or origin (de Sitter space), and they manifest as contiguous relations of the hypergeometric solutions.more » « less
-
We derive the equations governing the linear stability of Kerr–Newman spacetime to coupled electromagnetic-gravitational perturbations. The equations generalize the celebrated Teukolsky equation for curvature perturbations of Kerr, and the Regge–Wheeler equation for metric perturbations of Reissner–Nordström. Because of the “apparent indissolubility of the coupling between the spin-1 and spin-2 fields”, as put by Chandrasekhar, the stability of Kerr–Newman spacetime cannot be obtained through standard decomposition in modes. Due to the impossibility to decouple the modes of the gravitational and electromagnetic fields, the equations governing the linear stability of Kerr–Newman have not been previously derived. Using a tensorial approach that was applied to Kerr, we produce a set of generalized Regge–Wheeler equations for perturbations of Kerr–Newman, which are suitable for the study of linearized stability by physical space methods. The physical space analysis overcomes the issue of coupling of spin-1 and spin-2 fields and represents the first step towards an analytical proof of the stability of the Kerr–Newman black hole.more » « less
An official website of the United States government

