skip to main content


Title: A Framework for Harnessing Citizen Scientists and Journalist Networks for Post-disaster Reconnaissance
Vast amounts of damage data exist following natural disasters; the difficulty is collecting these perishable data in a timely fashion and curating them in a way that facilitates their use in follow-on research. Traditional on-the-ground reconnaissance efforts tend to focus limited human and financial resources on collecting and documenting detailed data of the most severe damage, typically in relatively small geographic areas immediately following an event. To improve post-event loss predictions, it is imperative that we collect broad and robust damage datasets, including details on good and poor performance and performance in small-to-moderate events. This presentation will introduce a framework to proactively engage local journalists and citizen scientists to collect vast amounts of real-world observational data via social media networks, such that valuable time, money, and engineering expertise can be focused on interpreting the citizen science data and on investigating the most interesting observations of damage more fully. The presentation will discuss how parts of this framework are being implemented in a National Science Foundation RAPID Response Research project to collect and curate social media data from Hurricane Florence and what future work is necessary to fully realize this citizen scientist-enabled framework for developing robust damage datasets for the natural hazards research community.  more » « less
Award ID(s):
1902460
NSF-PAR ID:
10209512
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 Natural Hazards Workshop—Researchers Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  2. Obeid, I. ; Selesnick, I. (Ed.)
    The Neural Engineering Data Consortium at Temple University has been providing key data resources to support the development of deep learning technology for electroencephalography (EEG) applications [1-4] since 2012. We currently have over 1,700 subscribers to our resources and have been providing data, software and documentation from our web site [5] since 2012. In this poster, we introduce additions to our resources that have been developed within the past year to facilitate software development and big data machine learning research. Major resources released in 2019 include: ● Data: The most current release of our open source EEG data is v1.2.0 of TUH EEG and includes the addition of 3,874 sessions and 1,960 patients from mid-2015 through 2016. ● Software: We have recently released a package, PyStream, that demonstrates how to correctly read an EDF file and access samples of the signal. This software demonstrates how to properly decode channels based on their labels and how to implement montages. Most existing open source packages to read EDF files do not directly address the problem of channel labels [6]. ● Documentation: We have released two documents that describe our file formats and data representations: (1) electrodes and channels [6]: describes how to map channel labels to physical locations of the electrodes, and includes a description of every channel label appearing in the corpus; (2) annotation standards [7]: describes our annotation file format and how to decode the data structures used to represent the annotations. Additional significant updates to our resources include: ● NEDC TUH EEG Seizure (v1.6.0): This release includes the expansion of the training dataset from 4,597 files to 4,702. Calibration sequences have been manually annotated and added to our existing documentation. Numerous corrections were made to existing annotations based on user feedback. ● IBM TUSZ Pre-Processed Data (v1.0.0): A preprocessed version of the TUH Seizure Detection Corpus using two methods [8], both of which use an FFT sliding window approach (STFT). In the first method, FFT log magnitudes are used. In the second method, the FFT values are normalized across frequency buckets and correlation coefficients are calculated. The eigenvalues are calculated from this correlation matrix. The eigenvalues and correlation matrix's upper triangle are used to generate feature. ● NEDC TUH EEG Artifact Corpus (v1.0.0): This corpus was developed to support modeling of non-seizure signals for problems such as seizure detection. We have been using the data to build better background models. Five artifact events have been labeled: (1) eye movements (EYEM), (2) chewing (CHEW), (3) shivering (SHIV), (4) electrode pop, electrostatic artifacts, and lead artifacts (ELPP), and (5) muscle artifacts (MUSC). The data is cross-referenced to TUH EEG v1.1.0 so you can match patient numbers, sessions, etc. ● NEDC Eval EEG (v1.3.0): In this release of our standardized scoring software, the False Positive Rate (FPR) definition of the Time-Aligned Event Scoring (TAES) metric has been updated [9]. The standard definition is the number of false positives divided by the number of false positives plus the number of true negatives: #FP / (#FP + #TN). We also recently introduced the ability to download our data from an anonymous rsync server. The rsync command [10] effectively synchronizes both a remote directory and a local directory and copies the selected folder from the server to the desktop. It is available as part of most, if not all, Linux and Mac distributions (unfortunately, there is not an acceptable port of this command for Windows). To use the rsync command to download the content from our website, both a username and password are needed. An automated registration process on our website grants both. An example of a typical rsync command to access our data on our website is: rsync -auxv nedc_tuh_eeg@www.isip.piconepress.com:~/data/tuh_eeg/ Rsync is a more robust option for downloading data. We have also experimented with Google Drive and Dropbox, but these types of technology are not suitable for such large amounts of data. All of the resources described in this poster are open source and freely available at https://www.isip.piconepress.com/projects/tuh_eeg/downloads/. We will demonstrate how to access and utilize these resources during the poster presentation and collect community feedback on the most needed additions to enable significant advances in machine learning performance. 
    more » « less
  3. The Geoscience Education Targeting Underrepresented Populations program is a National Science Foundation funded project designed to assess the effectiveness of a multifaceted approach to increase recruitment and retention in Earth & Environmental Science (EES) majors at Weber State University (WSU) in Ogden, Utah. This program integrates a combination of early outreach to high schools, concurrent-enrollment courses, a summer bridge program, structured early undergraduate research experiences, community engaged learning, and multiple pedagogies to support a diverse student population. The focus of this presentation will be on the place-based educational approach to teaching an Earth science summer bridge program and a first-year summer research experience. These programs overlap in both time and location allowing incoming students to have peer-to-peer interactions with current EES majors. The summer bridge program runs for two weeks and provides students with an introduction to the WSU campus, available student services, initial advising, and an early collaborative research experience focused on local natural hazards and the Great Salt Lake basin water resources. Students collect water samples from Great Salt Lake, local streams, and a groundwater well field on WSU’s campus. Students then analyze major element chemistry of those samples with the help of faculty and students in the EES department using lab facilities at WSU. The summer research program is a four-week summer program for freshmen and sophomores who have declared an EES major. Students conduct in-depth field and lab research project on the Great Salt Lake ecosystem, using real-time geochemical data collected from field observatories on Antelope Island State Park. Students work as a team with a faculty lead and senior peer teaching assistants to address a research question by analyzing field station data as well as collecting and analyzing environmental chemistry and microbiology samples from the lake, including alkalinity, inorganic and organic carbon, major ions, cell counts, and photosynthetic efficiency. The summer research students also act as peer mentors for students in the Summer Bridge. All students present their research finding to friends and family at a celebratory event on the last day of both programs. We will present on the successes and challenges of the program to date and our plans to assess various components and their overall impact on student recruitment and retention in our department. 
    more » « less
  4. null (Ed.)
    Local business leaders, policy makers, elected officials, city planners, emergency managers, and private citizens are responsible for, and deeply affected by, the performance of critical supply chains and related infrastructures. At the center of critical supply chains is the food-energy-water nexus (FEW); a nexus that is key to a community’s wellbeing, resilience, and sustainability. In the 21st century, managing a local FEW nexus requires accurate data describing the function and structure of a community’s supply chains. However, data is not enough; we need data-informed conversation and technical and social capacity building among local stakeholders to utilize the data effectively. There are some resources available at the mesoscale and for food, energy, or water, but many communities lack the data and tools needed to understand connections and bridge the gaps between these scales and systems. As a result, we currently lack the capacity to manage these systems in small and medium sized communities where the vast majority of people, decisions, and problems reside. This study develops and validates a participatory citizen science process for FEW nexus capacity building and data-driven problem solving in small communities at the grassroots level. The FEWSION for Community Resilience (F4R) process applies a Public Participation in Scientific Research (PPSR) framework to map supply chain data for a community’s FEW nexus, to identify the social network that manages the nexus, and then to generate a data-informed conversation among stakeholders. F4R was piloted and co-developed with participants over a 2-year study, using a design-based research process to make evidence-based adjustments as needed. Results show that the F4R model was successful at improving volunteers’ awareness about nexus and supply chain issues, at creating a network of connections and communication with stakeholders across state, regional, and local organizations, and in facilitating data-informed discussion about improvements to the system. In this paper we describe the design and implementation of F4R and discuss four recommendations for the successful application of the F4R model in other communities: 1) embed opportunities for co-created PPSR, 2) build social capital, 3) integrate active learning strategies with user-friendly digital tools, and 4) adopt existing materials and structure. 
    more » « less
  5. Abstract

    Advances in visual perceptual tasks have been mainly driven by the amount, and types, of annotations of large-scale datasets. Researchers have focused on fully-supervised settings to train models using offline epoch-based schemes. Despite the evident advancements, limitations and cost of manually annotated datasets have hindered further development for event perceptual tasks, such as detection and localization of objects and events in videos. The problem is more apparent in zoological applications due to the scarcity of annotations and length of videos-most videos are at most ten minutes long. Inspired by cognitive theories, we present a self-supervised perceptual prediction framework to tackle the problem of temporal event segmentation by building a stable representation of event-related objects. The approach is simple but effective. We rely on LSTM predictions of high-level features computed by a standard deep learning backbone. For spatial segmentation, the stable representation of the object is used by an attention mechanism to filter the input features before the prediction step. The self-learned attention maps effectively localize the object as a side effect of perceptual prediction. We demonstrate our approach on long videos from continuous wildlife video monitoring, spanning multiple days at 25 FPS. We aim to facilitate automated ethogramming by detecting and localizing events without the need for labels. Our approach is trained in an online manner on streaming input and requires only a single pass through the video, with no separate training set. Given the lack of long and realistic (includes real-world challenges) datasets, we introduce a new wildlife video dataset–nest monitoring of the Kagu (a flightless bird from New Caledonia)–to benchmark our approach. Our dataset features a video from 10 days (over 23 million frames) of continuous monitoring of the Kagu in its natural habitat. We annotate every frame with bounding boxes and event labels. Additionally, each frame is annotated with time-of-day and illumination conditions. We will make the dataset, which is the first of its kind, and the code available to the research community. We find that the approach significantly outperforms other self-supervised, traditional (e.g., Optical Flow, Background Subtraction) and NN-based (e.g., PA-DPC, DINO, iBOT), baselines and performs on par with supervised boundary detection approaches (i.e., PC). At a recall rate of 80%, our best performing model detects one false positive activity every 50 min of training. On average, we at least double the performance of self-supervised approaches for spatial segmentation. Additionally, we show that our approach is robust to various environmental conditions (e.g., moving shadows). We also benchmark the framework on other datasets (i.e., Kinetics-GEBD, TAPOS) from different domains to demonstrate its generalizability. The data and code are available on our project page:https://aix.eng.usf.edu/research_automated_ethogramming.html

     
    more » « less