The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healing when exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.
- Publication Date:
- NSF-PAR ID:
- 10209562
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 3
- Page Range or eLocation-ID:
- Article No. e2016524118
- ISSN:
- 0027-8424
- Publisher:
- Proceedings of the National Academy of Sciences
- Sponsoring Org:
- National Science Foundation
More Like this
-
Bacterial cellulose (BC) has excellent material properties and can be produced sustainably through simple bacterial culture, but BC-producing bacteria lack the extensive genetic toolkits of model organisms such as Escherichia coli (E. coli). Here, a simple approach is reported for producing highly programmable BC materials through incorporation of engineered E. coli. The acetic acid bacterium Gluconacetobacter hansenii is cocultured with engineered E. coli in droplets of glucose-rich media to produce robust cellulose capsules, which are then colonized by the E. coli upon transfer to selective lysogeny broth media. It is shown that the encapsulated E. coli can produce engineered protein nanofibers within the cellulose matrix, yielding hybrid capsules capable of sequestering specific biomolecules from the environment and enzymatic catalysis. Furthermore, capsules are produced which can alter their own bulk physical properties through enzyme-induced biomineralization. This novel system uses a simple fabrication process, based on the autonomous activity of two bacteria, to significantly expand the functionality of BC-based living materials.
-
This research investigates the design of structurally performant, lightweight architectural elements produced through concrete 3D printing (C3DP). Traditionally, concrete requires dense and sturdy formwork, whose production adds significantly to the total cost and results in massive and heavy parts after demolding. C3DP offers the unique opportunity to both eliminate the need for formwork and to create lighter parts by introducing internal voids and cavities. The advent of additive manufacturing in a broad range of scales, materials, industries, and applications, led to increased interest and intense research into different types of porous structures, their geometry, and structural performance under various boundary conditions. Precise control over the sparse distribution of material allows not only for parts with similar strength at reduced mass but even for modifications of mechanical properties, like turning brittle materials into elastic or shock-absorbent ones. While with powder-based additive manufacturing processes like metal 3D printing, truss-based lattices have become very popular for the light-weighting of parts or to provide tissue growth scaffolds for medical implants, their geometry – a sparse space frame resulting in numerous individual contour islands and accentuated overhangs – cannot as easily be produced by C3DP, which is based on a continuous material extrusion. Alternative typesmore »
-
Abstract In response to environmental stressors, biological systems exhibit extraordinary adaptive capacity by turning destructive environmental stressors into constructive factors; however, the traditional engineering materials weaken and fail. Take the response of polymers to an aquatic environment as an example: Water molecules typically compromise the mechanical properties of the polymer network in the bulk and on the interface through swelling and lubrication, respectively. Here, we report a class of 3D-printable synthetic polymers that constructively strengthen their bulk and interfacial mechanical properties in response to the aquatic environment. The mechanism relies on a water-assisted additional cross-linking reaction in the polymer matrix and on the interface. As such, the typically destructive water can constructively enhance the polymer’s bulk mechanical properties such as stiffness, tensile strength, and fracture toughness by factors of 746% to 790%, and the interfacial bonding by a factor of 1,000%. We show that the invented polymers can be used for soft robotics that self-strengthen matrix and self-heal cracks after training in water and water-healable packaging materials for flexible electronics. This work opens the door for the design of synthetic materials to imitate the constructive adaptation of biological systems in response to environmental stressors, for applications such as artificial muscles,more »
-
Abstract Living cells have the capability to synthesize molecular components and precisely assemble them from the nanoscale to build macroscopic living functional architectures under ambient conditions. The emerging field of living materials has leveraged microbial engineering to produce materials for various applications but building 3D structures in arbitrary patterns and shapes has been a major challenge. Here we set out to develop a bioink, termed as “microbial ink” that is produced entirely from genetically engineered microbial cells, programmed to perform a bottom-up, hierarchical self-assembly of protein monomers into nanofibers, and further into nanofiber networks that comprise extrudable hydrogels. We further demonstrate the 3D printing of functional living materials by embedding programmed
Escherichia coli (E. coli ) cells and nanofibers into microbial ink, which can sequester toxic moieties, release biologics, and regulate its own cell growth through the chemical induction of rationally designed genetic circuits. In this work, we present the advanced capabilities of nanobiotechnology and living materials technology to 3D-print functional living architectures. -
Abstract Heterogeneous material systems consisting of metallic structures and polymer matrixes are of significance for applications such as integrated circuits, microelectromechanical devices, antennas, sensors, actuators, and metamaterials. Scaly-foot snail which lives in the deep ocean exhibits high strength and temperature resistance due to unique shells made of metal and polymer. Recently, different multi-material structures have been fabricated with metal deposition using multiple manufacturing processes. However, using these complicated hybrid processes is challenging to construct complex 3D structures of heterogeneous material with enhanced properties, high resolution, and time efficiency. Here, we establish a novel manufacturing strategy to build bioinspired hierarchical structures with heterogeneous material systems using electrically assisted stereolithography. The photocurable printing solution that can act as an electrolyte for charge transfer was developed, and the curing characteristic of the printing solution was further investigated. A fundamental understanding of the formation mechanism of metallic structures on the polymer matrix was studied through physics-based multiscale modeling and simulations. The correlation between metallic structures morphology, printing solution properties, and printing process parameters, and their effects in building bioinspired hierarchical structures with heterogeneous materials were identified. Demonstrative test cases were built to verify the printing performance of the proposed approach. This research work willmore »