skip to main content


Title: Experimental test of the cooling rate effect on blocking temperatures in stepwise thermal demagnetization
SUMMARY Upon cooling, most rocks acquire a thermoremanent magnetization (TRM); the cooling rate at which this happens not only affects palaeointensity estimates, but also their unblocking temperatures in stepwise thermal demagnetization experiments, which is important, for example, to estimate volcanic emplacement temperatures. Traditional single-domain (SD) theory of magnetic remanence relates relaxation times to blocking temperatures— the blocking temperature is the temperature at which the relaxation time becomes shorter than the experimental timescale—and therefore strictly only applies to remanence acquisition mechanisms at constant temperatures (i.e. viscous remanent magnetizations, VRMs). A theoretical framework to relate (constant) blocking temperatures to (time-varying) cooling rates exists, but this theory has very limited experimental verification—partly due to the difficulty of accurately knowing the cooling rates of geological materials. Here we present an experimental test of this ‘cooling rate effect on blocking temperatures’ through a series of demagnetization experiments of laboratory-induced TRMs with controlled cooling rates. The tested cooling rates span about 1 order of magnitude and are made possible through (1) extremely accurate demagnetization experiments using a low-temperature magnetic properties measurement system (MPMS) and (2) the use of a ‘1-step-only’ stepwise thermal demagnetization protocol where the relaxation process is measured over time. In this way the relaxation time corresponding to the blocking temperature is measured, which can be done to much higher accuracy than measuring the blocking temperature directly as done in traditional stepwise thermal demagnetization experiments. Our experiments confirm that the cooling rate relationship holds to high accuracy for ideal magnetic recorders, as shown for a synthetic weakly interacting SD magnetoferritin sample. A SD-dominated low-Ti titanomagnetite Tiva Canyon Tuff sample, however, showed that natural samples are unlikely to be sufficiently ‘ideal’ to meet the theoretical predictions to high accuracy—the experimental data agrees only approximately with the theoretical predictions, which may potentially affect blocking temperature estimates in stepwise thermal demagnetization experiments. Moreover, we find a strongly enhanced cooling rate effect on palaeointensities for even marginally non-ideal samples (up to 43 per cent increase in pTRM for a halving of the cooling rate).  more » « less
Award ID(s):
1642268
NSF-PAR ID:
10209678
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
224
Issue:
2
ISSN:
0956-540X
Page Range / eLocation ID:
1116 to 1126
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Some rocks contain multiple remanence “components,” each of which preserves a record of a different magnetic field. The temperature ranges over which these remanence components unblock can overlap, making it difficult to determine their directions. We present a data analysis tool called Thermal Resolution Of Unblocking Temperatures (TROUT) that treats the process of thermal demagnetization as a function of temperature (or alternating field demagnetization as a function of coercivity). TROUT models the unblocking temperature/coercivity distributions of components in a demagnetization experiment, allowing these distributions to overlap. TROUT can be used to find the temperatures/coercivities over which paleomagnetic directions change and when two directional components overlap resulting in curved demagnetization trajectories. When applied to specimens given multi‐component Thermoremanent Magnetizations (TRMs) in the laboratory, the TROUT method estimates the temperature at which the partial TRMs were acquired to within one temperature step, even for specimens with significant overlap. TROUT has numerous applications: knowing the temperature at which the direction changes is useful for experiments in which the thermal history of a specimen is of interest (e.g., emplacement temperature of pyroclastic deposits, re‐heating of archaeological artifacts, reconstruction of cooling rates of igneous bodies). The ability to determine whether a single component or multiple components are demagnetizing at a given temperature is useful for choosing appropriate ranges of temperatures to use in paleodirection/intensity experiments. Finally, the width of the range of temperature overlap may be useful for inferring the composition, grain size and domain state of magnetic mineral assemblages.

     
    more » « less
  2. Abstract

    The theory for recording of thermally blocked remanences predicts a quasilinear relationship between low fields like the Earth's in which rocks cool and acquire a magnetization. This serves as the foundation for estimating ancient magnetic field strengths. Addressing long‐standing questions concerning Earth's magnetic field requires a global paleointensity data set, but recovering the ancient field strength is complicated because the theory only pertains to uniformly magnetized particles. A key requirement of a paleointensity experiment is that a magnetization blocked at a given temperature should be unblocked by zero‐field reheating to the same temperature. However, failure of this requirement occurs frequently and the causes and consequences of failure are understood incompletely. Recent experiments demonstrate that the remanence in many samples typical of those used in paleointensity experiments is unstable, exhibiting an “aging” effect in which the (un)blocking temperature spectra can change over only a few years resulting in nonideal experimental behavior. While a fresh remanence may conform to the requirement of equality of blocking and unblocking temperatures, aged remanences may not. Blocking temperature spectra can be unstable (fragile), which precludes reproduction of the conditions under which the original magnetization was acquired. This limits our ability to acquire accurate and precise ancient magnetic field strength estimates because differences between known and estimated fields can be significant for individual specimens, with a low field bias. Fragility of unblocking temperature spectra may be related to grain sizes with lower energy barriers and may be detected by features observed in first‐order reversal curves.

     
    more » « less
  3. Paleomagnetic observations provide valuable evidence of the strength of magnetic fields present during evolution of the Solar System. Such information provides important constraints on physical processes responsible for rapid accretion of the protoplanetesimal disk. For this purpose, magnetic recordings must be stable and resist magnetic overprints from thermal events and viscous acquisition over many billions of years. A lack of comprehensive understanding of magnetic domain structures carrying remanence has, until now, prevented accurate estimates of the uncertainty of recording fidelity in almost all paleomagnetic samples. Recent computational advances allow detailed analysis of magnetic domain structures in iron particles as a function of grain morphology, size, and temperature. Our results show that uniformly magnetized equidimensional iron particles do not provide stable recordings, but instead larger grains containing single-vortex domain structures have very large remanences and high thermal stability—both increasing rapidly with grain size. We derive curves relating magnetic thermal and temporal stability demonstrating that cubes (>35 nm) and spheres (>55 nm) are likely capable of preserving magnetic recordings from the formation of the Solar System. Additionally, we model paleomagnetic demagnetization curves for a variety of grain size distributions and find that unless a sample is dominated by grains at the superparamagnetic size boundary, the majority of remanence will block at high temperatures ( ∼ 100   ° C of Curie point). We conclude that iron and kamacite (low Ni content FeNi) particles are almost ideal natural recorders, assuming that there is no chemical or magnetic alteration during sampling, storage, or laboratory measurement. 
    more » « less
  4. Abstract

    The magnetization of hematite‐bearing sedimentary rocks provides critical records of geomagnetic reversals and paleogeography. However, the timing of hematite remanent magnetization acquisition is typically difficult to constrain. While detrital hematite in sediment can lead to a primary depositional remanent magnetization, alteration of minerals through interaction with oxygen can lead to the postdepositional formation of hematite. In this study, we use exceptionally preserved fluvial sediments within the 1.1‐billion‐year‐old Freda Formation to gain insight into the timing of hematite remanence acquisition and its magnetic properties. This deposit contains siltstone intraclasts that were eroded from a coexisting lithofacies and redeposited within channel sandstone. Thermal demagnetization, petrography, and rock magnetic experiments on these clasts reveal two generations of hematite. One population of hematite demagnetized at the highest unblocking temperatures and records directions that rotated along with the clasts. This component is a primary detrital remanent magnetization. The other component is removed at lower unblocking temperatures and has a consistent direction throughout the intraclasts. This component is held by finer‐grained hematite that grew and acquired a chemical remanent magnetization following deposition resulting in a population that includes superparamagnetic nanoparticles in addition to remanence‐carrying grains. The data support the interpretation that magnetizations of hematite‐bearing sedimentary rocks held by >400‐nm grains that unblock close to the Néel temperature are more likely to record magnetization from the time of deposition. This primary magnetization can be successfully isolated from cooccurring authigenic hematite through high‐resolution thermal demagnetization.

     
    more » « less
  5. Abstract

    The past ∼200 million years of Earth's geomagnetic field behavior have been recorded within oceanic basalts, many of which are only accessible via scientific ocean drilling. Obtaining the best possible paleomagnetic measurements from such valuable samples requires an a priori understanding of their magnetic mineralogies when choosing the most appropriate protocol for stepwise demagnetization experiments (either alternating field or thermal). Here, we present a quick, and non‐destructive method that utilizes the amplitude‐dependence of magnetic susceptibility to screen submarine basalts prior to choosing a demagnetization protocol, whenever conducting a pilot study or other detailed rock‐magnetic characterization is not possible. We demonstrate this method using samples acquired during International Ocean Discovery Program Expedition 391. Our approach is rooted in the observation that amplitude‐dependent magnetic susceptibility is observed in basalt samples whose dominant magnetic carrier is multidomain titanomagnetite (∼TM60–65, (Ti0.60–0.65Fe0.35–0.40)Fe2O4). Samples with low Ti contents within titanomagnetite or samples that have experienced a high degree of oxidative weathering do not display appreciable amplitude dependence. Due to their low Curie temperatures, basalts that possess amplitude‐dependence should ideally be demagnetized either using alternating fields or via finely‐spaced thermal demagnetization heating steps below 300°C. Our screening method can enhance the success rate of paleomagnetic studies of oceanic basalt samples.

     
    more » « less