Abstract Surface waves on Earth's magnetopause have a controlling effect upon global magnetospheric dynamics. Since spacecraft provide sparse in situ observation points, remote sensing these modes using ground‐based instruments in the polar regions is desirable. However, many open conceptual questions on the expected signatures remain. Therefore, we provide predictions of key qualitative features expected in auroral, ionospheric, and ground magnetic observations through both magnetohydrodynamic theory and a global coupled magnetosphere‐ionosphere simulation of a magnetopause surface eigenmode. These show monochromatic oscillatory field‐aligned currents (FACs), due to both the surface mode and its non‐resonant Alfvén coupling, are present throughout the magnetosphere. The currents peak in amplitude at the equatorward edge of the magnetopause boundary layer, not the open‐closed boundary as previously thought. They also exhibit slow poleward phase motion rather than being purely evanescent. We suggest the upward FAC perturbations may result in periodic auroral brightenings. In the ionosphere, convection vortices circulate the poleward moving FAC structures. Finally, surface mode signals are predicted in the ground magnetic field, with ionospheric Hall currents rotating perturbations by approximately (but not exactly) 90° compared to the magnetosphere. Thus typical dayside magnetopause surface modes should be strongest in the East‐West ground magnetic field component. Overall, all ground‐based signatures of the magnetopause surface mode are predicted to have the same frequency acrossL‐shells, amplitudes that maximize near the magnetopause's equatorward edge, and larger latitudinal scales than for field line resonance. Implications in terms of ionospheric Joule heating and geomagnetically induced currents are discussed.
more »
« less
Testing the electrodynamic method to derive height-integrated ionospheric conductances
We have used empirical models for electric potentials and the magnetic fields both in space and on the ground to obtain maps of the height-integrated Pedersen and Hall ionospheric conductivities at high latitudes. This calculation required use of both “curl-free” and “divergencefree” components of the ionospheric currents, with the former obtained from magnetic fields that are used in a model of the field-aligned currents. The second component is from the equivalent current, usually associated with Hall currents, derived from the ground-level magnetic field. Conductances were calculated for varying combinations of the interplanetary magnetic field (IMF) magnitude and orientation angle, as well as the dipole tilt angle. The results show that reversing the sign of the Y component of the IMF produces substantially different conductivity patterns. The Hall conductivities are largest on the dawn side in the upward, Region 2 fieldaligned currents. Low electric field strengths in the Harang discontinuity lead to inconclusive results near midnight. Calculations of the Joule heating, obtained from the electric field and both components of the ionospheric current, are compared with the Poynting flux in space. The maps show some differences, while their integrated totals match to within 1 %. Some of the Poynting flux that enters the polar cap is dissipated as Joule heating within the auroral ovals, where the conductivity is greater.
more »
« less
- Award ID(s):
- 1638270
- PAR ID:
- 10209870
- Date Published:
- Journal Name:
- Annales geophysicae
- Volume:
- 39
- ISSN:
- 0992-7689
- Page Range / eLocation ID:
- 31-51
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We introduce a new framework called Machine Learning (ML) based Auroral Ionospheric electrodynamics Model (ML‐AIM). ML‐AIM solves a current continuity equation by utilizing the ML model of Field Aligned Currents of Kunduri et al. (2020,https://doi.org/10.1029/2020JA027908), the FAC‐derived auroral conductance model of Robinson et al. (2020,https://doi.org/10.1029/2020JA028008), and the solar irradiance conductance model of Moen and Brekke (1993,https://doi.org/10.1029/92gl02109). The ML‐AIM inputs are 60‐min time histories of solar wind plasma, interplanetary magnetic fields (IMF), and geomagnetic indices, and its outputs are ionospheric electric potential, electric fields, Pedersen/Hall currents, and Joule Heating. We conduct two ML‐AIM simulations for a weak geomagnetic activity interval on 14 May 2013 and a geomagnetic storm on 7–8 September 2017. ML‐AIM produces physically accurate ionospheric potential patterns such as the two‐cell convection pattern and the enhancement of electric potentials during active times. The cross polar cap potentials (ΦPC) from ML‐AIM, the Weimer (2005,https://doi.org/10.1029/2004ja010884) model, and the Super Dual Auroral Radar Network (SuperDARN) data‐assimilated potentials, are compared to the ones from 3204 polar crossings of the Defense Meteorological Satellite Program F17 satellite, showing better performance of ML‐AIM than others. ML‐AIM is unique and innovative because it predicts ionospheric responses to the time‐varying solar wind and geomagnetic conditions, while the other traditional empirical models like Weimer (2005,https://doi.org/10.1029/2004ja010884) designed to provide a quasi‐static ionospheric condition under quasi‐steady solar wind/IMF conditions. Plans are underway to improve ML‐AIM performance by including a fully ML network of models of aurora precipitation and ionospheric conductance, targeting its characterization of geomagnetically active times.more » « less
-
Abstract The Poynting vector (Poynting flux) from Earth's magnetosphere downward toward its ionosphere carries the energy that powers the Joule heating in the ionosphere and thermosphere. The Joule heating controls fundamental ionospheric properties affecting the entire magnetosphere‐ionosphere‐thermosphere system, so it is necessary to understand when and where the Poynting flux is significant. Taking advantage of new data sets generated from DMSP (Defense Meteorological Satellite Program) observations, we investigate the Poynting flux distribution within and around the auroral zone, where most magnetosphere‐ionosphere (M‐I) dynamics and thus Joule heating occurs. We find that the Poynting flux, which is generally larger under more active conditions, is concentrated in the sunlit cusp and near the interface between Region 1 and 2 currents. The former concentration suggests voltage generators drive the cusp dynamics. The latter concentration shows asymmetries with respect to the interface between the Region 1 and 2 currents. We show that these reflect the controlling impact of subauroral polarization streams and dawnside auroral polarization streams on the Poynting flux.more » « less
-
Intense currents produced during geomagnetic storms dissipate energy in the ionosphere through Joule heating. This dissipation has significant space weather effects, and thus it is important to determine the ability of physics-based simulations to replicate real events quantitatively. Several empirical models estimate Joule heating based on ionospheric currents using the AE index. In this study, we select 11 magnetic storm simulations from the CCMC database and compare the integrated Joule heating in the simulations with the results of empirical models. We also use the SWMF global magnetohydrodynamic simulations for 12 storms to reproduce the correlation between the simulated AE index and simulated Joule heating. We find that the scale factors in the empirical models are half what is predicted by the SWMF simulations.more » « less
-
Abstract Our current knowledge of the geomagnetic poleward and equatorward boundary dynamics is limited, particularly, how deep those two latitudinal boundaries can extend into lower geomagnetic latitudes during magnetic storms. We want to understand the motion of the boundary because it is important in terms of the location and magnitude of the effects of geomagnetic disturbances associated with storms on the ground. In this study we derive spherical elementary ionospheric currents from ground magnetometer arrays covering North America and Greenland during six magnetic storms in 2015 and 2018. With two dimensional maps of the auroral region current, we select the equatorward boundary of the region 2 currents by‐eye and fit the boundary with an ellipse to derive the location of the equatorward boundary at magnetic midnight. We have obtained over 500 boundaries and find that the midnight boundary location varies between 45° and 66° magnetic latitude. We examine the influence of the interplanetary magnetic field (IMF), solar wind plasma, and geomagnetic indices on the location of the magnetic midnight equatorial boundary and find that the equatorial boundary location is best correlated with the IMF Bz, VBz, and the Sym‐H index. We demonstrate that as the Bz component becomes more negative, the magnitude of VBz increases, and the magnitude of the Sym‐H index increases, the magnetic midnight equatorial boundary shifts equatorward during periods of moderate to high geomagnetic activity.more » « less
An official website of the United States government

