Various high-frequency waves in the vicinity of upper-hybrid and Langmuir frequencies are commonly observed in different space plasma environments. Such waves and fluctuations have been reported in the magnetosphere of the Earth, a planet with an intrinsic strong magnetic field. Mars has no intrinsic magnetic field and, instead, it possesses a weak induced magnetosphere, which is highly dynamic due to direct exposure to the solar wind. In the present paper, we investigate the presence of high-frequency plasma waves in the Martian plasma environment by making use of the high-resolution electric field data from the Mars Atmosphere and Volatile Evolution missioN (MAVEN) spacecraft. Aims. This study aims to provide conclusive observational evidence of the occurrence of high-frequency plasma waves around the electron plasma frequency in the Martian magnetosphere. We observe two distinct wave modes with frequency below and above the electron plasma frequency. The characteristics of these high-frequency waves are quantified and presented here. We discuss the generation of possible wave modes by taking into account the ambient plasma parameters in the region of observation. Methods. We have made use of the medium frequency (100 Hz–32 kHz) burst mode-calibrated electric field data from the Langmuir Probe and Waves instrument on board NASA’s MAVEN mission. Due to the weak magnetic field strength, the electron gyro-frequency is much lower than the electron plasma frequency, which implies that the upper-hybrid and Langmuir waves have comparable frequencies. A total of 19 wave events with wave activities around electron plasma frequency were identified by examining high-resolution spectrograms of the electric field. Results. These waves were observed around 5 LT when MAVEN crossed the magnetopause boundary and entered the magnetosheath region. These waves are either a broadband- or narrowband-type with distinguishable features in the frequency domain. The narrowband-type waves have spectral peak above the electron plasma frequency. However, in the case of broadband-type waves, the spectral peak always occurred below the electron plasma frequency. The broadband waves consistently show a periodic modulation of 8–14 ms. Conclusions. The high-frequency narrowband-type waves observed above the electron plasma frequency are believed to be associated with upper-hybrid or Langmuir waves. However, the physical mechanism responsible for the generation of broadband-type waves and the associated 8–14 ms modulation remain unexplained and further investigation is required.
more »
« less
Rotated Spectral Principal Component Analysis (rsPCA) for Identifying Dynamical Modes of Variability in Climate Systems
Abstract Spectral PCA (sPCA), in contrast to classical PCA, offers the advantage of identifying organized spatiotemporal patterns within specific frequency bands and extracting dynamical modes. However, the unavoidable trade-off between frequency resolution and robustness of the PCs leads to high sensitivity to noise and overfitting, which limits the interpretation of the sPCA results. We propose herein a simple nonparametric implementation of sPCA using the continuous analytic Morlet wavelet as a robust estimator of the cross-spectral matrices with good frequency resolution. To improve the interpretability of the results, especially when several modes of similar amplitude exist within the same frequency band, we propose a rotation of the complex-valued eigenvectors to optimize their spatial regularity (smoothness). The developed method, called rotated spectral PCA (rsPCA), is tested on synthetic data simulating propagating waves and shows impressive performance even with high levels of noise in the data. Applied to global historical geopotential height (GPH) and sea surface temperature (SST) daily time series, the method accurately captures patterns of atmospheric Rossby waves at high frequencies (3–60-day periods) in both GPH and SST and El Niño–Southern Oscillation (ENSO) at low frequencies (2–7-yr periodicity) in SST. At high frequencies the rsPCA successfully unmixes the identified waves, revealing spatially coherent patterns with robust propagation dynamics.
more »
« less
- PAR ID:
- 10209943
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 34
- Issue:
- 2
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 715 to 736
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Superpressure balloon data of unprecedented coverage from Loon LLC is used to investigate the seasonal and latitudinal variability of lower stratospheric gravity waves over the entire intrinsic frequency spectrum. We show that seasonal variability in both gravity wave amplitudes and spectral slopes exist for a wide range of intrinsic frequencies and provide estimates of spectral slopes in five latitudinal regions for all four seasons, in five different frequency windows. The spectral slopes can be used to infer gravity wave amplitudes of intrinsic frequencies as high as 70 cycles/day from gravity waves resolved in model and reanalysis data. We also show that a robust relationship between the phase of the quasi‐biennial oscillation and gravity wave amplitudes exists for intrinsic frequencies as high as the buoyancy frequency. These are the first estimates of seasonal and latitudinal variability of gravity wave spectral slopes and high‐frequency amplitudes and constitute a significant step toward obtaining observationally constrained gravity wave parameterizations in climate models.more » « less
-
We perform a rigorous study of private matrix analysis when only the last 𝑊 updates to matrices are considered useful for analysis. We show the existing framework in the non-private setting is not robust to noise required for privacy. We then propose a framework robust to noise and use it to give first efficient 𝑜(𝑊) space differentially private algorithms for spectral approximation, principal component analysis (PCA), multi-response linear regression, sparse PCA, and non-negative PCA. Prior to our work, no such result was known for sparse and non-negative differentially private PCA even in the static data setting. We also give a lower bound to demonstrate the cost of privacy in the sliding window model.more » « less
-
Abstract The internal wave (IW) continuum of a regional ocean model is studied in terms of the vertical spectral kinetic energy (KE) fluxes and transfers at high vertical wavenumbers. Previous work has shown that this model permits a partial representation of the IW cascade. In this work, vertical spectral KE flux is decomposed into catalyst, source, and destination vertical modes and frequency bands of nonlinear scattering, a framework that allows for the discernment of different types of nonlinear interactions involving both waves and eddies. Energy transfer within the supertidal IW continuum is found to be strongly dependent on resolution. Specifically, at a horizontal grid spacing of 1/48°, most KE in the supertidal continuum arrives there from lower-frequency modes through a single nonlinear interaction, whereas at 1/384° and with sufficient vertical resolution KE transfers within the supertidal IW continuum are comparable in size to KE transfer from lower-frequency modes. Additionally, comparisons are made with existing theoretical and observational work on energy pathways in the IW continuum. Induced diffusion (ID) is found to be associated with a weak forward frequency transfer within the supertidal IW continuum. ID is also limited to the highest vertical wavenumbers and is more sensitive to resolution relative to spectrally local interactions. At the same time, ID-like processes involving high-vertical-wavenumber near-inertial and tidal waves as well as low-vertical-wavenumber eddy fields are substantial, suggesting that the processes giving rise to a Garrett–Munk-like spectra in the present numerical simulation and perhaps the real ocean may be more varied than in idealized or wave-only frameworks.more » « less
-
The presence and nature of low-frequency (0.1–10 mHz) Alfvénic waves in the corona have been established over the past decade, with many of these results coming from coronagraphic observations of the infrared Fexiiiline. The Cryo-NIRSP instrument situated at DKIST has recently begun acquiring science-quality data of the same Fexiiiline, with at least a factor of 9 improvement in spatial resolution, a factor of 30 increase in temporal resolution, and an increase in signal-to-noise ratio, when compared to the majority of previously available data. Here we present an analysis of 1 s cadence sit-and-stare data from Cryo-NIRSP, examining the Doppler velocity fluctuations associated with the Fexiii1074 nm coronal line. We are able to confirm previous results of Alfvénic waves in the corona and explore a new frequency regime. The data reveal that the power-law behavior of the Doppler velocity power spectrum extends to higher frequencies. This result appears to challenge some models of photospheric-driven Alfvénic waves that predict a lack of high-frequency wave power in the corona owing to strong chromospheric damping. Moreover, the high-frequency waves do not transport as much energy as their low-frequency counterparts, with less time-averaged energy per frequency interval. We are also able to confirm the incompressible nature of the fluctuations with little coherence between the line amplitude and Doppler velocity time series.more » « less
An official website of the United States government

