skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strategies for visuospatial reasoning: Experiments in sufficiency and diversity
In this paper, we present the Visuospatial Reasoning Environment for Experimentation (VREE). VREE provides a simulated environment where intelligent agents interact with virtual objects while solving different visuospatial reasoning tasks. This paper shows how VREE is valuable for studying the sufficiency of visual imagery approaches for a large number of visuospatial reasoning tasks as well as how diverse strategies can be represented and studied within a single task. We present results from computational experiments using VREE on the block design task and on numerous subtests from the Leiter-R test battery on nonverbal intelligence.  more » « less
Award ID(s):
1730044 1922697
PAR ID:
10209971
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Eighth Annual Conference on Advances in Cognitive Systems (ACS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a systematic review of the empirical literature that uses dual-task interference methods for investigating the on-line involvement of language in various cognitive tasks. In these studies, participants perform some primary task X putatively recruiting linguistic resources while also engaging in a secondary, concurrent task. If performance on the primary task decreases under interference, there is evidence for language involvement in the primary task. We assessed studies (N = 101) reporting at least one experiment with verbal interference and at least one control task (either primary or secondary). We excluded papers with an explicitly clinical, neurological, or developmental focus. The primary tasks identified include categorization, memory, mental arithmetic, motor control, reasoning (verbal and visuospatial), task switching, theory of mind, visual change, and visuospatial integration and wayfinding. Overall, the present review found that internal language is likely to play a facilitative role in memory and categorization when items to be remembered or categorized have readily available labels, when inner speech can act as a form of behavioral self-cuing (inhibitory control, task set reminders, verbal strategy), and when inner speech is plausibly useful as “workspace,” for example, for mental arithmetic. There is less evidence for the role of internal language in cross-modal integration, reasoning relying on a high degree of visual detail or items low on nameability, and theory of mind. We discuss potential pitfalls and suggestions for streamlining and improving the methodology. 
    more » « less
  2. null (Ed.)
    Visuospatial reasoning refers to a diverse set of skills that involve thinking about space and time. An artificial agent with access to a sufficiently large set of visuospatial reasoning skills might be able to generalize its reasoning ability to an unprecedented expanse of tasks including portions of many popular intelligence tests. In this paper, we stress the importance of a developmental approach to the study of visuospatial reasoning, with an emphasis on fundamental skills. A comprehensive benchmark, with properties we outline in this paper including breadth, depth, explainability, and domain-specificity, would encourage and measure the genesis of such a skillset. Lacking an existing benchmark that satisfies these properties, we outline the design of a novel test in this paper. Such a benchmark would allow for expanding analysis of existing datasets’ and agents’ applicability to the problem of generalized visuospatial reasoning. 
    more » « less
  3. Observations abound about the power of visual imagery in human intelligence, from how Nobel prize-winning physicists make their discoveries to how children understand bedtime stories. These observations raise an important question for cognitive science, which is, what are the computations taking place in someone’s mind when they use visual imagery? Answering this question is not easy and will require much continued research across the multiple disciplines of cognitive science. Here, we focus on a related and more circumscribed question from the perspective of artificial intelligence (AI): If you have an intelligent agent that uses visual imagery-based knowledge representations and reasoning operations, then what kinds of problem solving might be possible, and how would such problem solving work? We highlight recent progress in AI toward answering these questions in the domain of visuospatial reasoning, looking at a case study of how imagery-based artificial agents can solve visuospatial intelligence tests. In particular, we first examine several variations of imagery-based knowledge representations and problem-solving strategies that are sufficient for solving problems from the Raven’s Progressive Matrices intelligence test. We then look at how artificial agents, instead of being designed manually by AI researchers, might learn portions of their own knowledge and reasoning procedures from experience, including learning visuospatial domain knowledge, learning and generalizing problem-solving strategies, and learning the actual definition of the task in the first place. 
    more » « less
  4. Abstract Self‐regulation is a widely studied construct, generally assumed to be cognitively supported by executive functions (EFs). There is a lack of clarity and consensus over the roles of specific components of EFs in self‐regulation. The current study examines the relations between performance on (a) a self‐regulation task (Heads, Toes, Knees Shoulders Task) and (b) two EF tasks (Knox Cube and Beads Tasks) that measure different components of updating: working memory and short‐term memory, respectively. We compared 107 8‐ to 13‐year‐old children (64 females) across demographically‐diverse populations in four low and middle‐income countries, including: Tanna, Vanuatu; Keningau, Malaysia; Saltpond, Ghana; and Natal, Brazil. The communities we studied vary in market integration/urbanicity as well as level of access, structure, and quality of schooling. We found that performance on the visuospatial working memory task (Knox Cube) and the visuospatial short‐term memory task (Beads) are each independently associated with performance on the self‐regulation task, even when controlling for schooling and location effects. These effects were robust across demographically‐diverse populations of children in low‐and middle‐income countries. We conclude that this study found evidence supporting visuospatial working memory and visuospatial short‐term memory as distinct cognitive processes which each support the development of self‐regulation. 
    more » « less
  5. Recent work has shown how to prompt large language models with explanations to obtain strong performance on textual reasoning tasks, i.e., the chain-of-thought paradigm. However, subtly different explanations can yield widely varying downstream task accuracy. Explanations that have not been “tuned” for a task, such as off-the-shelf explanations written by non-experts, may lead to mediocre performance. This paper tackles the problem of how to optimize explanation-infused prompts in a blackbox fashion. We first generate sets of candidate explanations for each example in the prompt using a leave-one-out scheme, then find an effective combination of these explanations with a two-stage framework. We first evaluate explanations for each in-context example in isolation according to two proxy metrics, log likelihood and accuracy on new examples. Then, we search over combinations of explanations to find one that yields high performance against a silver-labeled development set. Across four textual reasoning tasks spanning question answering, mathematical reasoning, and natural language inference, results show that our proxy metrics correlate with ground truth accuracy and our overall method can effectively improve prompts over crowdworker annotations and naive search strategies. 
    more » « less