skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A measure of visuospatial reasoning skills: Painting the big picture
Visuospatial reasoning refers to a diverse set of skills that involve thinking about space and time. An artificial agent with access to a sufficiently large set of visuospatial reasoning skills might be able to generalize its reasoning ability to an unprecedented expanse of tasks including portions of many popular intelligence tests. In this paper, we stress the importance of a developmental approach to the study of visuospatial reasoning, with an emphasis on fundamental skills. A comprehensive benchmark, with properties we outline in this paper including breadth, depth, explainability, and domain-specificity, would encourage and measure the genesis of such a skillset. Lacking an existing benchmark that satisfies these properties, we outline the design of a novel test in this paper. Such a benchmark would allow for expanding analysis of existing datasets’ and agents’ applicability to the problem of generalized visuospatial reasoning.  more » « less
Award ID(s):
1730044 1922697
PAR ID:
10209972
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Eighth Annual Conference on Advances in Cognitive Systems (ACS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Observations abound about the power of visual imagery in human intelligence, from how Nobel prize-winning physicists make their discoveries to how children understand bedtime stories. These observations raise an important question for cognitive science, which is, what are the computations taking place in someone’s mind when they use visual imagery? Answering this question is not easy and will require much continued research across the multiple disciplines of cognitive science. Here, we focus on a related and more circumscribed question from the perspective of artificial intelligence (AI): If you have an intelligent agent that uses visual imagery-based knowledge representations and reasoning operations, then what kinds of problem solving might be possible, and how would such problem solving work? We highlight recent progress in AI toward answering these questions in the domain of visuospatial reasoning, looking at a case study of how imagery-based artificial agents can solve visuospatial intelligence tests. In particular, we first examine several variations of imagery-based knowledge representations and problem-solving strategies that are sufficient for solving problems from the Raven’s Progressive Matrices intelligence test. We then look at how artificial agents, instead of being designed manually by AI researchers, might learn portions of their own knowledge and reasoning procedures from experience, including learning visuospatial domain knowledge, learning and generalizing problem-solving strategies, and learning the actual definition of the task in the first place. 
    more » « less
  2. null (Ed.)
    In this paper, we present the Visuospatial Reasoning Environment for Experimentation (VREE). VREE provides a simulated environment where intelligent agents interact with virtual objects while solving different visuospatial reasoning tasks. This paper shows how VREE is valuable for studying the sufficiency of visual imagery approaches for a large number of visuospatial reasoning tasks as well as how diverse strategies can be represented and studied within a single task. We present results from computational experiments using VREE on the block design task and on numerous subtests from the Leiter-R test battery on nonverbal intelligence. 
    more » « less
  3. Spatial reasoning comprises a set of skills used to mentally visualize, orient, and transform objects or spaces. These skills, which develop in humans through interaction with our physical world and direct instruction, are strongly associated with mathematics achievement but are often neglected in early grades mathematics teaching. To conceptualize ways to increase the representation of spatial reasoning skills in the classroom, we examined the outcomes of cognitive interviews with kin- dergarten through grade two students in which they engaged with one spatial reasoning task. Qualitative analyses of students’ work samples and verbal reasoning responses on a single shape de/composition task revealed evidence of a continuum of sophistication in their responses that supports a previously articulated hypothetical learning progression. Results suggest that teachers may be able to efficiently infer students’ skills in spatial reasoning using a single task and use the results to make instructional decisions that would support students’ mathematical development. The practical implications of this work indicate that additional classroom-based research could support the adoption of such practices that could help teachers efficiently teach spatial reasoning skills through mathematics instruction. 
    more » « less
  4. Entities and events are crucial to natural language reasoning and common in procedural texts. Existing work has focused either exclusively on entity state tracking (e.g., whether a pan is hot) or on event reasoning (e.g., whether one would burn themselves by touching the pan), while these two tasks are often causally related. We propose CREPE, the first benchmark on causal reasoning of event plausibility and entity states. We show that most language models, including GPT-3, perform close to chance at .35 F1, lagging far behind human at .87 F1. We boost model performance to .59 F1 by creatively representing events as programming languages while prompting language models pretrained on code. By injecting the causal relations between entities and events as intermediate reasoning steps in our representation, we further boost the performance to .67 F1. Our findings indicate not only the challenge that CREPE brings for language models, but also the efficacy of code-like prompting combined with chain-of-thought prompting for multihop event reasoning. 
    more » « less
  5. This paper presents a systematic review of the empirical literature that uses dual-task interference methods for investigating the on-line involvement of language in various cognitive tasks. In these studies, participants perform some primary task X putatively recruiting linguistic resources while also engaging in a secondary, concurrent task. If performance on the primary task decreases under interference, there is evidence for language involvement in the primary task. We assessed studies (N = 101) reporting at least one experiment with verbal interference and at least one control task (either primary or secondary). We excluded papers with an explicitly clinical, neurological, or developmental focus. The primary tasks identified include categorization, memory, mental arithmetic, motor control, reasoning (verbal and visuospatial), task switching, theory of mind, visual change, and visuospatial integration and wayfinding. Overall, the present review found that internal language is likely to play a facilitative role in memory and categorization when items to be remembered or categorized have readily available labels, when inner speech can act as a form of behavioral self-cuing (inhibitory control, task set reminders, verbal strategy), and when inner speech is plausibly useful as “workspace,” for example, for mental arithmetic. There is less evidence for the role of internal language in cross-modal integration, reasoning relying on a high degree of visual detail or items low on nameability, and theory of mind. We discuss potential pitfalls and suggestions for streamlining and improving the methodology. 
    more » « less