skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spin-orbit torque switching of chiral magnetization across a synthetic antiferromagnet
Abstract The interfacial Dzyaloshinskii-Moriya interaction (DMI) holds promises for design and control of chiral spin textures in low-dimensional magnets with efficient current-driven dynamics. Recently, an interlayer DMI has been found to exist across magnetic multilayers with a heavy-metal spacer between magnetic layers. This opens the possibility of chirality in these three-dimensional magnetic structures. Here we show the existence of the interlayer DMI in a synthetic antiferromagnetic multilayer with both inversion and in-plane asymmetry. We analyse the interlayer DMI’s effects on the magnetization and the current-induced spin-orbit torque (SOT) switching of magnetization through a combination of experimental and numerical studies. The chiral nature of the interlayer DMI leads to an asymmetric SOT switching of magnetization under an in-plane magnetic field. Our work paves the way for further explorations on controlling chiral magnetizations across magnetic multilayers through SOTs, which can provide a new path in the design of SOT devices.  more » « less
Award ID(s):
1936221
PAR ID:
10210095
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
4
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane structural asymmetry in the device, both of which can be difficult to implement in practical applications. Here, we report bias-field-free SOT switching in a single perpendicular CoTb layer with an engineered vertical composition gradient. The vertical structural inversion asymmetry induces strong intrinsic SOTs and a gradient-driven Dzyaloshinskii–Moriya interaction (g-DMI), which breaks the in-plane symmetry during the switching process. Micromagnetic simulations are in agreement with experimental results, and elucidate the role of g-DMI in the deterministic switching processes. This bias-field-free switching scheme for perpendicular ferrimagnets with g-DMI provides a strategy for efficient and compact SOT device design. 
    more » « less
  2. Abstract Field-free switching of perpendicular magnetization has been observed in an epitaxial L1$$_1$$-ordered CoPt/CuPt bilayer and attributed to spin-orbit torque (SOT) arising from the crystallographic $3m$ point group of the interface. Using a first-principles nonequilibrium Green’s function formalism combined with the Anderson disorder model, we calculate the angular dependence of the SOT in a CoPt/CuPt bilayer and find that the magnitude of the $3m$$ SOT is about 20\% of the conventional dampinglike SOT. We further study the magnetization dynamics in perpendicularly magnetized films in the presence of $$3m$ SOT and Dzyaloshinskii-Moriya interaction, using the equations of motion for domain wall dynamics and micromagnetic simulations. We find that for systems with strong interfacial DMI characterized by the N'eel character of domain walls, a very large current density is required to achieve deterministic switching because reorientation of the magnetization inside the domain wall is necessary to induce the switching asymmetry. For thicker films with relatively weak interfacial DMI and the Bloch character of domain walls the deterministic switching with much smaller currents is possible, which agrees with recent experimental findings. 
    more » « less
  3. Switching of perpendicular magnetization via spin–orbit torque (SOT) is of particular interest in the development of non-volatile magnetic random access memory (MRAM) devices. We studied current-induced magnetization switching of Ir/GdFeCo/Cu/Pt heterostructures in a Hall cross geometry as a function of the in-plane applied magnetic field. Remarkably, magnetization switching is observed at zero applied field. This is shown to result from the competition between SOT, the Oersted field generated by the charge current, and the material's coercivity. Our results show a means of achieving zero-field switching that can impact the design of future spintronics devices, such as SOT-MRAM. 
    more » « less
  4. We report the observation of current induced spin–orbit torque (SOT) switching of magnetization in a (Ga,Mn)(As,P) film using perpendicular magnetic anisotropy. Complete SOT switching of magnetization was achieved with current densities as low as 7.4 × 105 A/cm2, which is one to two orders of magnitude smaller than that normally used for SOT switching in ferromagnet/heavy metal bilayer systems. The observed magnetization switching chirality during current scans is consistent with SOT arising from spin polarization caused by the Dresselhaus-type spin–orbit-induced (SOI) fields. The magnitudes of effective SOI fields corresponding to the SOT were obtained from shifts of switching angles in angular dependent Hall measurements observed for opposite current polarities. By measuring effective SOI fields for the [11̄0] and the [110] current directions, we were then able to separate the values of the Dresselhaus-type (HeffD) and Rashba (HeffR) SOI fields. At a current density of 6.0 × 105 A/cm2, these values are HeffD=6.73Oe and HeffR=1.31Oe, respectively. The observed ratio of about 5:1 between Dresselhaus-type and Rashba SOI fields is similar to that observed in a GaMnAs film with an in-plane magnetic anisotropy. 
    more » « less
  5. Abstract All-electrical driven magnetization switching attracts much attention in next-generation spintronic memory and logic devices, particularly in magnetic random-access memory (MRAM) based on the spin–orbit torque (SOT), i.e. SOT-MRAM, due to its advantages of low power consumption, fast write/read speed, and improved endurance, etc. For conventional SOT-driven switching of the magnet with perpendicular magnetic anisotropy, an external assisted magnetic field is necessary to break the inversion symmetry of the magnet, which not only induces the additional power consumption but also makes the circuit more complicated. Over the last decade, significant effort has been devoted to field-free magnetization manipulation by using SOT. In this review, we introduce the basic concepts of SOT. After that, we mainly focus on several approaches to realize the field-free deterministic SOT switching of the perpendicular magnet. The mechanisms mainly include mirror symmetry breaking, chiral symmetry breaking, exchange bias, and interlayer exchange coupling. Furthermore, we show the recent progress in the study of SOT with unconventional origin and symmetry. The final section is devoted to the industrial-level approach for potential applications of field-free SOT switching in SOT-MRAM technology. 
    more » « less