skip to main content


Search for: All records

Award ID contains: 1936221

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Magnetic skyrmions are of great interest to both fundamental research and applications in post-von-Neumann computing devices. The successful implementation of skyrmionic devices requires functionalities of skyrmions with effective controls. Here we show that the local dynamics of skyrmions, in contrast to the global dynamics of a skyrmion as a whole, can be introduced to provide effective functionalities for versatile computing. A single skyrmion interacting with local pinning centres under thermal effects can fluctuate in time and switch between a small-skyrmion and a large-skyrmion state, thereby serving as a robust true random number generator for probabilistic computing. Moreover, neighbouring skyrmions exhibit an anti-correlated coupling in their fluctuation dynamics. Both the switching probability and the dynamic coupling strength can be tuned by modifying the applied magnetic field and spin current. Our results could lead to progress in developing magnetic skyrmionic devices with high tunability and efficient controls.

     
    more » « less
  2. Abstract

    Magnetocapacitance (MC) effect has been observed in systems where both symmetries of time-reversal and space-inversion are broken, for examples, in multiferroic materials and spintronic devices. The effect has received increasing attention due to its interesting physics and the prospect of applications. Recently, a large tunnel magnetocapacitance (TMC) of 332% at room temperature was reported using MgO-based (001)-textured magnetic tunnel junctions (MTJs). Here, we report further enhancement in TMC beyond 420% at room temperature using epitaxial MTJs with an MgAl2O4(001) barrier with a cation-disordered spinel structure. This large TMC is partially caused by the high effective tunneling spin polarization, resulted from the excellent lattice matching between the Fe electrodes and the MgAl2O4barrier. The epitaxial nature of this MTJ system sports an enhanced spin-dependent coherent tunneling effect. Among other factors leading to the large TMC are the appearance of the spin capacitance, the large barrier height, and the suppression of spin flipping through the MgAl2O4barrier. We explain the observed TMC by the Debye-Fröhlich modelled calculation incorporating Zhang-sigmoid formula, parabolic barrier approximation, and spin-dependent drift diffusion model. Furthermore, we predict a 1000% TMC in MTJs with a spin polarization of 0.8. These experimental and theoretical findings provide a deeper understanding on the intrinsic mechanism of the TMC effect. New applications based on large TMC may become possible in spintronics, such as multi-value memories, spin logic devices, magnetic sensors, and neuromorphic computing.

     
    more » « less
  3. Abstract

    Magnetic tunnel junctions (MTJs) in the field of spintronics have received enormous attention owing to their fascinating spin phenomena for fundamental physics and potential applications. MTJs exhibit a large tunnel magnetoresistance (TMR) at room temperature. However, TMR depends strongly on the bias voltage, which reduces the magnitude of TMR. On the other hand, tunnel magnetocapacitance (TMC), which has also been observed in MTJs, can be increased when subjecting to a biasing voltage, thus exhibiting one of the most interesting spin phenomena. Here we report a large voltage-induced TMC beyond 330% in MgO-based MTJs, which is the largest value ever reported for MTJs. The voltage dependence and frequency characteristics of TMC can be explained by the newly proposed Debye-Fröhlich model using Zhang-sigmoid theory, parabolic barrier approximation, and spin-dependent drift diffusion model. Moreover, we predict that the voltage-induced TMC ratio could reach over 3000% in MTJs. It is a reality now that MTJs can be used as capacitors that are small in size, broadly ranged in frequencies and controllable by a voltage. Our theoretical and experimental findings provide a deeper understanding on the exact mechanism of voltage-induced AC spin transports in spintronic devices. Our research may open new avenues to the development of spintronics applications, such as highly sensitive magnetic sensors, high performance non-volatile memories, multi-functional spin logic devices, voltage controlled electronic components, and energy storage devices.

     
    more » « less
  4. Abstract

    The interfacial Dzyaloshinskii-Moriya interaction (DMI) holds promises for design and control of chiral spin textures in low-dimensional magnets with efficient current-driven dynamics. Recently, an interlayer DMI has been found to exist across magnetic multilayers with a heavy-metal spacer between magnetic layers. This opens the possibility of chirality in these three-dimensional magnetic structures. Here we show the existence of the interlayer DMI in a synthetic antiferromagnetic multilayer with both inversion and in-plane asymmetry. We analyse the interlayer DMI’s effects on the magnetization and the current-induced spin-orbit torque (SOT) switching of magnetization through a combination of experimental and numerical studies. The chiral nature of the interlayer DMI leads to an asymmetric SOT switching of magnetization under an in-plane magnetic field. Our work paves the way for further explorations on controlling chiral magnetizations across magnetic multilayers through SOTs, which can provide a new path in the design of SOT devices.

     
    more » « less
  5. To enable the practical use of skyrmion-based devices, it is essential to achieve a balance between energy efficiency and thermal stability while also ensuring reliable electrical detection against noise. Understanding how a skyrmion interacts with material disorder and external perturbations is thus essential. Here, we investigate the electronic noise of a single skyrmion under the influence of thermal fluctuations and spin currents in a magnetic thin film. We detect the thermally induced noise with a 1/ f γ signature in the strong pinning regime but a random telegraph noise in the intermediate pinning regime. Both the thermally dominated and current induced telegraph like signals are detected in the weak pinning regime. Our results provide a comprehensive electronic noise picture of a single skyrmion, demonstrating the potential of noise fluctuation as a valuable tool for characterizing the pinning condition of a skyrmion. These insights could also aid in the development of low-noise and reliable skyrmion-based devices. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  6. The design and performance of a low-noise, modular cryogenic probe, which is applicable to a wide range of measurements over a broad range of working frequencies, temperatures, and magnetic fields, is presented. The design of the probe facilitates the exchange of sample holders and sample-stage amplifiers, which, combined with its characteristic low transmission and reflection loss, make this design suitable for high precision or low sensitivity measurements. The specific example of measuring the shot noise of magnetic tunnel junctions is discussed. We highlight various design characteristics chosen specifically to expand the applicability of the probe to measurement techniques such as nuclear magnetic resonance. 
    more » « less
  7. Magnetic domain structures are active electron transport agents and can be used to induce large magnetoresistance (MR), particularly in half-metallic solids. We have studied the excess resistance induced by a single magnetic domain wall in a one-dimensional half-metallic CrO 2 nanoscale conductor with a built-in constriction whose channel width ( d ) ranges from 30 to 200 nm. We observed that the domain wall-induced MR is enhanced by 70 fold when d decreases from 200 nm to 30 nm. We speculate that the enhancement is due to the increased domain wall resistance (DWR) and the extra contribution of ballistic magnetoresistance (BMR). We have uncovered a large size effect of d on the MR induced by the domain wall, which scales with d as d −1.87±0.32 . Accordingly, we predict that the MR ratio of a simple CrO 2 nanowire impregnated with a constriction at a 150 nm 2 cross-section could reach 100%. This large MR far exceeds that of a conventional ferromagnetic nanowire, confirming the role of half metallicity on enhanced magneto-transport. 
    more » « less
  8. This paper reviews the recently-developed class of band-modulation devices, born from the recent progress in fully-depleted silicon-on-insulator (FD-SOI) and other ultrathin-body technologies, which have enabled the concept of gate-controlled electrostatic doping. In a lateral PIN diode, two additional gates can construct a reconfigurable PNPN structure with unrivalled sharp-switching capability. We describe the implementation, operation, and various applications of these band-modulation devices. Physical and compact models are presented to explain the output and transfer characteristics in both steady-state and transient modes. Not only can band-modulation devices be used for quasi-vertical current switching, but they also show promise for compact capacitorless memories, electrostatic discharge (ESD) protection, sensing, and reconfigurable circuits, while retaining full compatibility with modern silicon processing and standard room-temperature low-voltage operation. 
    more » « less