Abstract Consumer effects on rainforest primary production are often considered negligible because herbivores and macrodetritivores usually consume a small fraction of annual plant and litter production, even though consumers are known to have effects on plant production and composition in nontropical systems. Disturbances, such as treefall gaps, however, often increase resources to understory food webs, thereby increasing herbivory and feeding rates of detritivores. This increase in consumption could lead to more prominent ecosystem‐level effects of consumers after disturbances, such as storms that cause light gaps. We determined how the effects of invertebrate herbivores (walking sticks) and detritivores (litter snails) on understory plant growth may be altered by disturbances in a Puerto Rican rainforest using an enclosure experiment. Consumers had significant effects on plant growth, but only in light gaps. Specifically, herbivores increased plant growth by 60%, and there was a trend for detritivores to reduce plant growth. Additionally, plant biomass tended to be 50% higher with both consumers in combination, suggesting that herbivores may mediate the effects of detritivores by altering the resources available to detritivore food webs. This study demonstrates that disturbance alters the effects of rainforest consumers, and, furthermore, that consumer activity has the potential to change rainforest successional processes.
more »
« less
Consumer regulation of the carbon cycle in coastal wetland ecosystems
Despite escalating anthropogenic alteration of food webs, how the carbon cycle in ecosystems is regulated by food web processes remains poorly understood. We quantitatively synthesize the effects of consumers (herbivores, omnivores and carnivores) on the carbon cycle of coastal wetland ecosystems, ‘blue carbon’ ecosystems that store the greatest amount of carbon per unit area among all ecosystems. Our results reveal that consumers strongly affect many processes of the carbon cycle. Herbivores, for example, generally reduce carbon absorption and carbon stocks (e.g. aboveground plant carbon by 53% and aboveground net primary production by 23%) but may promote some carbon emission processes (e.g. litter decomposition by 32%). The average strengths of these effects are comparable with, or even times higher than, changes driven by temperature, precipitation, nitrogen input, CO 2 concentration, and plant invasions. Furthermore, consumer effects appear to be stronger on aboveground than belowground carbon processes and vary markedly with trophic level, body size, thermal regulation strategy and feeding type. Despite important knowledge gaps, our results highlight the powerful impacts of consumers on the carbon cycle and call for the incorporation of consumer control into Earth system models that predict anthropogenic climate change and into management strategies of Earth's carbon stocks. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
more »
« less
- Award ID(s):
- 1832178
- PAR ID:
- 10210119
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society B: Biological Sciences
- Volume:
- 375
- Issue:
- 1814
- ISSN:
- 0962-8436
- Page Range / eLocation ID:
- 20190451
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Consumers can directly (e.g., consumption) and indirectly (e.g., trophic cascades) influence carbon cycling in blue carbon ecosystems. Previous work found that large grazers have nuanced effects on carbon stocks, yet, small, bioturbating‐grazers, which remove plant biomass and alter sediment properties, remain an understudied driver of carbon cycling. We used field‐derived and remote sensing data to quantify how the purple marsh crab,Sesarma reticulatum, influenced carbon stocks, flux, and recovery in salt marshes.Sesarmacaused a 40%–70% loss in carbon stocks as fronts propagated inland (i.e., ungrazed to recovered transition), with front migration rates accelerating over time. Despite latitudinal differences, front migration rate had no effect on carbon stocks, flux, or time to replacement. When we includedSesarmadisturbance in carbon flux calculations, we found it may take 5–100 years for marshes to replace lost carbon, if at all. Combined, we show that small grazers cause a net loss in carbon stocks as they move through the landscape, and irrespective of migration rate, these grazer‐driven impacts persist for decades. This work showcases the significant role of consumers in carbon storage and flux, challenging the classic paradigm of plant–sediment feedbacks as the primary ecogeomorphic driver of carbon cycling in blue carbon ecosystems.more » « less
-
Abstract Food web ecology has revolutionized our understanding of ecological processes, but the drivers of food web properties like trophic position (TP) and food chain length are notoriously enigmatic. In terrestrial ecosystems, above‐ and belowground systems were historically compartmentalized into “green” and “brown” food webs, but the coupling of these systems by animal consumers is increasingly recognized, with potential consequences for trophic structure. We used stable isotope analysis (δ13C, δ15N) of individual amino acids to trace the flow of essential biomolecules and jointly measure multichannel feeding, food web coupling, and TP in a guild of small mammals. We then tested the hypothesis that brown energy fluxes to aboveground consumers increase terrestrial food chain length via cryptic trophic transfers during microbial decomposition. We found that the average small mammal consumer acquired nearly 70% of their essential amino acids (69.0% ± 7.6%) from brown food webs, leading to significant increases in TP across species and functional groups. Fungi were the primary conduit of brown energy to aboveground consumers, providing nearly half the amino acid budget for small mammals on average (44.3% ± 12.0%). These findings illustrate the tightly coupled nature of green and brown food webs and show that microbially mediated energy flow ultimately regulates food web structure in aboveground consumers. Consequently, we propose that the integration of green and brown energy channels is a cryptic driver of food chain length in terrestrial ecosystems.more » « less
-
null (Ed.)Characterizing energy flow and trophic linkages is fundamental to understanding the functioning and resilience of Arctic ecosystems under increasing pressure from climate change and anthropogenic exploitation. We used carbon and nitrogen stable isotopes to examine trophic dynamics and the relative contribution of terrestrial organic matter, water column phytoplankton, and phytobenthos (benthic micro- and macro-autotrophs as well as sea ice algae) to the food webs supporting 45 macroconsumers in three Arctic coastal lagoon ecosystems (Krusenstern, Sisualik, Akulaaq) and the adjacent Kotzebue Sound with varying degrees of connectivity in Cape Krusenstern National Monument, Alaska. A two-source (water column particulate organic matter and benthic sediment organic matter), two-isotope trophic dynamics model informed by a Bayesian isotope mixing model revealed that the Lagoon-Kotzebue Sound coastal ecosystem supported consumers along a trophic position continuum from primary consumers, including amphipods, copepods, and clams to trophic level five predators, such as seastars, piscivorous fishes, seals, and seabirds. The relative contribution of the three primary producer end members, terrestrial organic matter (41 ± 21%), phytoplankton (25 ± 21%), and phytobenthos (34 ± 23%) varied as a function of: 1) consumer foraging ecology and 2) consumer location. Suspension feeders received most of their carbon from food webs based on phytoplankton (49 ± 11%) and terrestrial organic matter (23 ± 5%), whereas herbivores and detritivores received the majority of their carbon from phytobenthos-based food webs, 58 ± 10% and 60 ± 8%, respectively. Omnivores and predators showed more even distributions of resource reliance and greater overall variance among species. Within the invertebrates, the importance of terrestrial organic matter decreased and phytobenthos increased with increasing trophic position. The importance of terrestrial organic matter contribution increased with lagoon proximity to major rivers inputs and isolation from Kotzebue Sound. Several taxa with cultural and subsistence food importance to local communities showed significant reliance (30–90% of baseline carbon) on food chains linked to fresh terrestrial organic matter. Our study indicates that terrestrial-marine linkages are important to the function of Arctic coastal lagoon ecosystems and artisanal fisheries. These linkages are likely to strengthen in the future with regional changes in erosion and runoff associated with climate change and anthropogenic disturbance.more » « less
-
Abstract Aboveground ecosystem structure moderates and even confers essential ecosystem functions. This includes an ecosystem’s carbon dynamics, which are strongly influenced by its structure: for example, tropical savannas like those in central Kenya store substantial amounts of carbon in soil. Savannas’ belowground allocation of carbon makes them important for global carbon sequestration, but difficult to monitor. However, the labile soil carbon pool is responsive to changes in ecosystem structure and is thus a good indicator of overall soil organic carbon dynamics. Kenya’s savanna structure is controlled by belowground ecosystem engineers (termites), ambient weather conditions, and the aboveground engineering influences of large-bodied, mammalian consumers. As a result, climate change and biodiversity loss are likely to change savannas’ aboveground structure. To predict likely outcomes of these threats on savanna soil carbon, it is critical to explore the relationships between labile soil carbon and ecosystem structure, local climate, and mammalian consumer community composition. In a large-scale, long-term herbivore exclosure experiment in central Kenya, we sampled labile carbon from surface soils at three distinct savanna structural elements: termite mounds, beneath tree canopies, and the grassland matrix. In one sampling year, we measured total extractable organic carbon (TEOC), total extractable nitrogen (TEN), and extractable microbial biomass for each sample. Across three sampling years with varying weather conditions, we measured rate of labile soil carbon mineralization. We quantified areal coverage of each structural element across herbivore community treatments to estimate pool sizes and mineralization dynamics at the plot scale. Concentrations and stocks of soil TEOC, TEN, and microbial biomass were driven by the structural element from which they were sampled (soils collected under tree canopies generally had the highest of each). Large-bodied herbivore community composition interacted variably with concentrations, stocks, and carbon mineralization, resulting in apparently compensatory effects of herbivore treatment and structural element with no net effects of large herbivore community composition on plot-scale labile carbon dynamics. We confirmed engineering of structural heterogeneity by consumers and identified distinct labile carbon dynamics in each structural element. However, carbon and nitrogen were also influenced by consumer community composition, indicating potentially compensatory interacting effects of herbivore treatment and structural element. These results suggest that one pathway by which consumers influence savanna carbon is by altering its structural heterogeneity and thus the heterogeneity of its plot-scale labile carbon.more » « less
An official website of the United States government

