skip to main content


Title: Consumer regulation of the carbon cycle in coastal wetland ecosystems
Despite escalating anthropogenic alteration of food webs, how the carbon cycle in ecosystems is regulated by food web processes remains poorly understood. We quantitatively synthesize the effects of consumers (herbivores, omnivores and carnivores) on the carbon cycle of coastal wetland ecosystems, ‘blue carbon’ ecosystems that store the greatest amount of carbon per unit area among all ecosystems. Our results reveal that consumers strongly affect many processes of the carbon cycle. Herbivores, for example, generally reduce carbon absorption and carbon stocks (e.g. aboveground plant carbon by 53% and aboveground net primary production by 23%) but may promote some carbon emission processes (e.g. litter decomposition by 32%). The average strengths of these effects are comparable with, or even times higher than, changes driven by temperature, precipitation, nitrogen input, CO 2 concentration, and plant invasions. Furthermore, consumer effects appear to be stronger on aboveground than belowground carbon processes and vary markedly with trophic level, body size, thermal regulation strategy and feeding type. Despite important knowledge gaps, our results highlight the powerful impacts of consumers on the carbon cycle and call for the incorporation of consumer control into Earth system models that predict anthropogenic climate change and into management strategies of Earth's carbon stocks. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.  more » « less
Award ID(s):
1832178
NSF-PAR ID:
10210119
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Volume:
375
Issue:
1814
ISSN:
0962-8436
Page Range / eLocation ID:
20190451
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Characterizing energy flow and trophic linkages is fundamental to understanding the functioning and resilience of Arctic ecosystems under increasing pressure from climate change and anthropogenic exploitation. We used carbon and nitrogen stable isotopes to examine trophic dynamics and the relative contribution of terrestrial organic matter, water column phytoplankton, and phytobenthos (benthic micro- and macro-autotrophs as well as sea ice algae) to the food webs supporting 45 macroconsumers in three Arctic coastal lagoon ecosystems (Krusenstern, Sisualik, Akulaaq) and the adjacent Kotzebue Sound with varying degrees of connectivity in Cape Krusenstern National Monument, Alaska. A two-source (water column particulate organic matter and benthic sediment organic matter), two-isotope trophic dynamics model informed by a Bayesian isotope mixing model revealed that the Lagoon-Kotzebue Sound coastal ecosystem supported consumers along a trophic position continuum from primary consumers, including amphipods, copepods, and clams to trophic level five predators, such as seastars, piscivorous fishes, seals, and seabirds. The relative contribution of the three primary producer end members, terrestrial organic matter (41 ± 21%), phytoplankton (25 ± 21%), and phytobenthos (34 ± 23%) varied as a function of: 1) consumer foraging ecology and 2) consumer location. Suspension feeders received most of their carbon from food webs based on phytoplankton (49 ± 11%) and terrestrial organic matter (23 ± 5%), whereas herbivores and detritivores received the majority of their carbon from phytobenthos-based food webs, 58 ± 10% and 60 ± 8%, respectively. Omnivores and predators showed more even distributions of resource reliance and greater overall variance among species. Within the invertebrates, the importance of terrestrial organic matter decreased and phytobenthos increased with increasing trophic position. The importance of terrestrial organic matter contribution increased with lagoon proximity to major rivers inputs and isolation from Kotzebue Sound. Several taxa with cultural and subsistence food importance to local communities showed significant reliance (30–90% of baseline carbon) on food chains linked to fresh terrestrial organic matter. Our study indicates that terrestrial-marine linkages are important to the function of Arctic coastal lagoon ecosystems and artisanal fisheries. These linkages are likely to strengthen in the future with regional changes in erosion and runoff associated with climate change and anthropogenic disturbance. 
    more » « less
  2. ABSTRACT

    Anthropogenic increases in nitrogen (N) and phosphorus (P) concentrations can strongly influence the structure and function of ecosystems. Even though lotic ecosystems receive cumulative inputs of nutrients applied to and deposited on land, no comprehensive assessment has quantified nutrient‐enrichment effects within streams and rivers. We conducted a meta‐analysis of published studies that experimentally increased concentrations of N and/or P in streams and rivers to examine how enrichment alters ecosystem structure (state: primary producer and consumer biomass and abundance) and function (rate: primary production, leaf breakdown rates, metabolism) at multiple trophic levels (primary producer, microbial heterotroph, primary and secondary consumers, and integrated ecosystem). Our synthesis included 184 studies, 885 experiments, and 3497 biotic responses to nutrient enrichment. We documented widespread increases in organismal biomass and abundance (mean response = +48%) and rates of ecosystem processes (+54%) to enrichment across multiple trophic levels, with no large differences in responses among trophic levels or between autotrophic or heterotrophic food‐web pathways. Responses to nutrient enrichment varied with the nutrient added (N, P, or both) depending on rateversusstate variable and experiment type, and were greater in flume and whole‐stream experiments than in experiments using nutrient‐diffusing substrata. Generally, nutrient‐enrichment effects also increased with water temperature and light, and decreased under elevated ambient concentrations of inorganic N and/or P. Overall, increased concentrations of N and/or P altered multiple food‐web pathways and trophic levels in lotic ecosystems. Our results indicate that preservation or restoration of biodiversity and ecosystem functions of streams and rivers requires management of nutrient inputs and consideration of multiple trophic pathways.

     
    more » « less
  3. Abstract

    Consumer effects on rainforest primary production are often considered negligible because herbivores and macrodetritivores usually consume a small fraction of annual plant and litter production, even though consumers are known to have effects on plant production and composition in nontropical systems. Disturbances, such as treefall gaps, however, often increase resources to understory food webs, thereby increasing herbivory and feeding rates of detritivores. This increase in consumption could lead to more prominent ecosystem‐level effects of consumers after disturbances, such as storms that cause light gaps. We determined how the effects of invertebrate herbivores (walking sticks) and detritivores (litter snails) on understory plant growth may be altered by disturbances in a Puerto Rican rainforest using an enclosure experiment. Consumers had significant effects on plant growth, but only in light gaps. Specifically, herbivores increased plant growth by 60%, and there was a trend for detritivores to reduce plant growth. Additionally, plant biomass tended to be 50% higher with both consumers in combination, suggesting that herbivores may mediate the effects of detritivores by altering the resources available to detritivore food webs. This study demonstrates that disturbance alters the effects of rainforest consumers, and, furthermore, that consumer activity has the potential to change rainforest successional processes.

     
    more » « less
  4. Abstract

    Primary consumers are under strong selection from resource (‘bottom‐up’) and consumer (‘top‐down’) controls, but the relative importance of these selective forces is unknown. We performed a meta‐analysis to compare the strength of top‐down and bottom‐up forces on consumer fitness, considering multiple predictors that can modulate these effects: diet breadth, feeding guild, habitat/environment, type of bottom‐up effects, type of top‐down effects and how consumer fitness effects are measured. We focused our analyses on the most diverse group of primary consumers, herbivorous insects, and found that in general top‐down forces were stronger than bottom‐up forces. Notably, chewing, sucking and gall‐making herbivores were more affected by top‐down than bottom‐up forces, top‐down forces were stronger than bottom‐up in both natural and controlled (cultivated) environments, and parasitoids and predators had equally strong top‐down effects on insect herbivores. Future studies should broaden the scope of focal consumers, particularly in understudied terrestrial systems, guilds, taxonomic groups and top‐down controls (e.g. pathogens), and test for more complex indirect community interactions. Our results demonstrate the surprising strength of forces exerted by natural enemies on herbivorous insects, and thus the necessity of using a tri‐trophic approach when studying insect‐plant interactions.

     
    more » « less
  5. Abstract

    Herbivorous ectothermic vertebrates are more diverse and abundant at lower latitudes. While thermal constraints may drive this pattern, its underlying cause remains unclear. We hypothesized that this constraint stems from an inability to meet the elevated phosphorus demands of bony vertebrates feeding on P‐poor plant material at cooler temperatures because low gross growth efficiency at warmer temperatures facilitates higher P ingestion rates. We predicted that dietary carbon:phosphorus (C:P) should exceed the threshold elemental ratio between carbon and P‐limited growth (TERC:P) for herbivores feeding at cooler temperatures, thereby limiting the range of herbivorous ectothermic vertebrates facing P‐limited growth.

    We tested this hypothesis using the Andean suckermouth catfishesAstroblepusandChaetostoma.Astroblepusare invertivores that inhabit relatively cool, high‐elevation streams whileChaetostomaare grazers that inhabit relatively warm, low‐elevation streams. We calculated TERC:Pfor each genus across its elevational range and compared these values to measured values of food quality over an elevational gradient in the Andes. We also broadly summarized measurements of TERC:Pacross diverse groups of fishes.

    Supporting our hypothesis, we found that dietary C:P was predicted to exceed the TERC:Pfor the grazerChaetostomanear the highest elevation where this genus has been recorded. Conversely, the TERC:Pfor the invertivoreAstroblepuswas consistently higher than that ofChaetostomaand thus its dietary C:P never approached the TERC:P. We found that, among all fishes, omnivores had higher average TERC:Pthan invertivores, and TERC:Pdid not vary with temperature.

    Our results suggest that, at least for Andean suckermouth catfishes, cool temperatures constrain herbivory at higher elevations. Increased gross growth efficiency at cooler temperatures evidently restricts the ability of P‐limited consumers to meet P demand. However, our survey of fish TERC:Pestimates suggests that some fishes are able to circumvent this constraint through behavioural and life‐history adaptations that reduce P demand or increase P use efficiency.

    The physiological trade‐offs underlying these functional shifts reveal that geographic dietary patterns can be predicted by stoichiometric theory, but variation in food quality and consumer traits that reduce P demand and/or increase P efficiency can create exceptions to these patterns.

    Aplain language summaryis available for this article.

     
    more » « less