ABSTRACT Herbivore fronts can alter plant traits (chemical and/or morphological features) and performance via grazing. Yet, herbivore‐driven trait alterations are rarely considered when assessing how these fronts shape ecosystems, despite the critical role that plant performance plays in ecosystem functioning. We evaluated herbivore fronts created by the purple marsh crab,Sesarma reticulatum, as it consumes the cordgrass,Spartina alterniflora, in Virginian salt marshes.Sesarmafronts form at the head of tidal creeks and move inland, creating a denuded mudflat between the tall‐formSpartinalow marsh (trailing edge) and the short‐formSpartinahigh marsh (leading edge). We quantifiedSesarmafront migration rate, tested ifSesarmaherbivory altered geomorphic processes andSpartinatraits at the trailing and leading edges, and examined how these trait changes persisted through the final 8 weeks of the growing season.Sesarmafront migration in our region is two times slower than fronts in the Southeast United States, andSpartinaretreat rate at the leading edge is greater than the revegetation rate at the trailing edge.Sesarmafronts lowered elevation and decreased sediment shear strength at the trailing edge while having no impact on soil organic matter and bulk density at either edge. At the leading edge,Sesarmagrazing reducedSpartinagrowth traits and defensive ability, and trait changes persisted through the remaining growing season. At the trailing edge, however,Sesarmagrazing promoted belowground biomass production and had limited to no effect on growth or defensive traits. We show that herbivore fronts negatively impact saltmarsh plant traits at their leading edge, potentially contributing to front propagation. In contrast, plants at the trailing edge were more resistant to herbivore grazing and may enhance resilience through elevated belowground biomass production. Future work should consider herbivore‐driven plant trait alterations in the context of herbivore fronts to better predict ecosystem response and recovery. 
                        more » 
                        « less   
                    
                            
                            A grazing crab drives saltmarsh carbon storage and recovery
                        
                    
    
            Abstract Consumers can directly (e.g., consumption) and indirectly (e.g., trophic cascades) influence carbon cycling in blue carbon ecosystems. Previous work found that large grazers have nuanced effects on carbon stocks, yet, small, bioturbating‐grazers, which remove plant biomass and alter sediment properties, remain an understudied driver of carbon cycling. We used field‐derived and remote sensing data to quantify how the purple marsh crab,Sesarma reticulatum, influenced carbon stocks, flux, and recovery in salt marshes.Sesarmacaused a 40%–70% loss in carbon stocks as fronts propagated inland (i.e., ungrazed to recovered transition), with front migration rates accelerating over time. Despite latitudinal differences, front migration rate had no effect on carbon stocks, flux, or time to replacement. When we includedSesarmadisturbance in carbon flux calculations, we found it may take 5–100 years for marshes to replace lost carbon, if at all. Combined, we show that small grazers cause a net loss in carbon stocks as they move through the landscape, and irrespective of migration rate, these grazer‐driven impacts persist for decades. This work showcases the significant role of consumers in carbon storage and flux, challenging the classic paradigm of plant–sediment feedbacks as the primary ecogeomorphic driver of carbon cycling in blue carbon ecosystems. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10525006
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 105
- Issue:
- 9
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In salt marshes of the Southeastern USA, purple marsh crabs (Sesarma reticulatum), hereafterSesarma, aggregate in grazing and burrowing fronts at the heads of tidal creeks, accelerating creek incision into marsh platforms. We explored the effects of this keystone grazer and sediment engineer on salt marsh sediment accumulation, hydrology, and carbon (C) and nitrogen (N) turnover using radionuclides (210Pb and7Be), total hydrolyzable amino acids (THAA), and C and N stable isotopes (δ13C and δ15N) in sediment from pairedSesarma-grazed and un-grazed creeks.Sesarma-grazed-creek sediments exhibited greater bioturbation and tidal inundation compared to sediments in un-grazed creeks, as indicated by larger210Pb and7Be inventories. Total organic carbon (TOC) to total nitrogen (TN) weight ratios (C:N) were higher and δ15N values were lower in grazed-creek sediments than in un-grazed-creek sediments, suggestingSesarmaremove and assimilate N in their tissues, and excrete N with lower δ15N values into sediments. In support of this inference, the percent total carbon (TC) and percent TOC declined by nearly half, percent TN decreased by ~ 80%, and the C:N ratio exhibited a ~ threefold increase betweenSesarmafore-gut and hind-gut contents. An estimated 91% ofSesarma’s diet was derived fromSpartina alterniflora,the region’s dominant salt marsh plant. We found that, asSesarmagrazing fronts progress across marsh landscapes, they enhance the decay ofSpartina-derived organic matter and prolong marsh tidal inundation. These findings highlight the need to better account for the effects of keystone grazers and sediment engineers, likeSesarma, in estimates of the stability and size of blue C stores in coastal wetlands.more » « less
- 
            null (Ed.)Despite escalating anthropogenic alteration of food webs, how the carbon cycle in ecosystems is regulated by food web processes remains poorly understood. We quantitatively synthesize the effects of consumers (herbivores, omnivores and carnivores) on the carbon cycle of coastal wetland ecosystems, ‘blue carbon’ ecosystems that store the greatest amount of carbon per unit area among all ecosystems. Our results reveal that consumers strongly affect many processes of the carbon cycle. Herbivores, for example, generally reduce carbon absorption and carbon stocks (e.g. aboveground plant carbon by 53% and aboveground net primary production by 23%) but may promote some carbon emission processes (e.g. litter decomposition by 32%). The average strengths of these effects are comparable with, or even times higher than, changes driven by temperature, precipitation, nitrogen input, CO 2 concentration, and plant invasions. Furthermore, consumer effects appear to be stronger on aboveground than belowground carbon processes and vary markedly with trophic level, body size, thermal regulation strategy and feeding type. Despite important knowledge gaps, our results highlight the powerful impacts of consumers on the carbon cycle and call for the incorporation of consumer control into Earth system models that predict anthropogenic climate change and into management strategies of Earth's carbon stocks. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.more » « less
- 
            Abstract Stocks and fluxes of soil inorganic carbon have long been ignored in the context of coastal carbon sequestration, and their implications for the climate cooling effect of blue carbon ecosystems are complex. Here, we investigate the role of soil inorganic carbon in five salt marshes along the northern coast of the European Wadden Sea, one of the world's largest intertidal areas, harboring ~ 20% of European salt‐marsh area. We demonstrate a substantial contribution of inorganic carbon (average: 29%; range: 7–57%) to the total soil carbon stock of the top 1 m. Notably, inorganic exceeded organic carbon stocks in one of the studied sites; a finding that we ascribe to site geomorphic features, such as proximity to marine calcium carbonate sources and hydrodynamic exposure. Contrary to our hypothesis that inorganic carbon stocks would decline along the successional gradient from tidal flat to high marsh, as carbonate deposits would progressively dissolve in increasingly organic‐rich rooted sediments, our findings demonstrate the opposite pattern—an increase in inorganic carbon stocks along the successional gradient. This suggests that the dissolution of calcium carbonates in the root zone is counterbalanced by other processes, such as trapping of sedimentary carbonates by marsh vegetation and calcium carbonate precipitation in anaerobic subsoils. In the context of blue carbon, it will be critical to develop an improved understanding of these plant‐ and microbiota‐mediated processes in calcium carbonate cycling.more » « less
- 
            null (Ed.)Accelerated sea-level rise poses a significant threat to coastal habitats, such as salt marshes, which provide critical ecosystem services. Persistence of salt marshes with rising sea levels relies, in part, on vertical accretion. Ecogeomorphic models emphasize the role of plant production in vertical accretion via sediment trapping and belowground organic matter contribution. Thus, changes in plant production can influence saltmarsh persistence with sea-level rise. However, models of marsh accretion do not consider animal-mediated changes in plant production. We tested how 2 marsh crabs, Minuca pugnax and Sesarma reticulatum , which have contrasting effects (facilitation vs. herbivory) on Spartina alterniflora production, may indirectly influence sediment deposition and belowground production, through observational surveys and field manipulation. Minuca facilitated Spartina biomass in some marshes, but not sediment deposition, and had no effect on belowground organic matter contribution, suggesting that in isolation, Minuca has little indirect impact on saltmarsh geomorphic processes. Sesarma reduced Spartina biomass; however, sediment deposition increased, contrary to ecogeomorphic models, likely due to sediment resuspension by Minuca . When Minuca and Sesarma co-occur, the effect on Spartina production and sediment deposition depended on the amount of grazing. When Sesarma grazing is low, Minuca facilitates Spartina growth and mitigates the effect of grazing. However, when Sesarma grazing is high and vegetation is removed, Minuca can resuspend sediment through bioturbation, suggesting the net effect of these species may depend on their relative abundance. This study demonstrates that the effects of plant-animal interactions on marsh resilience against sea-level rise are context dependent.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
