skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insider Attack Detection for Science DMZs Using System Performance Data
The science DMZ is a specialized network model developed to guarantee secure and efficient transfer of data for large-scale distributed research. To enable a high level of performance, the Science DMZ includes dedicated data transfer nodes (DTNs). Protecting these DTNs is crucial to maintaining the overall security of the network and the data, and insider attacks are a major threat. Although some limited network intrusion detection systems (NIDS) are deployed to monitor DTNs, this alone is not sufficient to detect insider threats. Monitoring for abnormal system behavior, such as unusual sequences of system calls, is one way to detect insider threats. However, the relatively predictable behavior of the DTN suggests that we can also detect unusual activity through monitoring system performance, such as CPU and disk usage, along with network activity. In this paper, we introduce a potential insider attack scenario, and show how readily available system performance metrics can be employed to detect data tampering within DTNs, using DBSCAN clustering to actively monitor for unexpected behavior.  more » « less
Award ID(s):
1739025
PAR ID:
10210345
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE Conference on Communications and Network Security (CNS)
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Science DMZs are specialized networks that enable large-scale distributed scientific research, providing efficient and guaranteed performance while transferring large amounts of data at high rates. The high-speed performance of a Science DMZ is made viable via data transfer nodes (DTNs), therefore they are a critical point of failure. DTNs are usually monitored with network intrusion detection systems (NIDS). However, NIDS do not consider system performance data, such as network I/O interrupts and context switches, which can also be useful in revealing anomalous system performance potentially arising due to external network based attacks or insider attacks. In this paper, we demonstrate how system performance metrics can be applied towards securing a DTN in a Science DMZ network. Specifically, we evaluate the effectiveness of system performance data in detecting TCP-SYN flood attacks on a DTN using DBSCAN (a density-based clustering algorithm) for anomaly detection. Our results demonstrate that system interrupts and context switches can be used to successfully detect TCP-SYN floods, suggesting that system performance data could be effective in detecting a variety of attacks not easily detected through network monitoring alone. 
    more » « less
  2. As data-intensive science becomes the norm in many fields of science, high-performance data transfer is rapidly becoming a core scientific infrastructure requirement. To meet such a requirement, there has been a rapid growth across university campus to deploy Science DMZs. However, it is challenging to efficiently monitor the traffic in Science DMZ because traditional intrusion detection systems (IDSes) are equipped with deep packet inspection (DPI), which is resource-consuming. We propose to develop a lightweight side-channel based anomaly detection system for traffic winnowing to reduce the volume of traffic finally monitored by the IDS. We evaluate our approach based on the experiments in a Science DMZ environment. Our evaluation demonstrates that our approach can significantly reduce the resource usage in traffic monitoring for Science DMZ. 
    more » « less
  3. The Science Demilitarized Zone (Science DMZ) is a network environment optimized for scientific applications. The Science DMZ model provides a reference set of network design patterns, tuned hosts and protocol stacks dedicated to large data transfers and streamlined security postures that significantly improve data transfer performance, accelerating scientific collaboration and discovery. Over the past decade, many universities and organizations have adopted this model for their research computing. Despite becoming increasingly popular, there is a lack of quantitative studies comparing such a specialized network to conventional production networks regarding network characteristics and data transfer performance. But does a Science DMZ exhibit significantly different behavior than a general-purpose campus network? Does it improve application performance compared a to general-purpose network? Through a two-year-long quantitative network measurement study, we find that a Science DMZ exhibits lower latency, higher throughput, and lower jitter behaviors. We also see several non-intuitive results. For example, a DMZ may take a longer route to external destinations and experience higher latency than the campus network. While the DMZ model benefits researchers, the benefits are not automatic, careful network tuning based on specific use cases is required to realize the full potential of Science DMZs. 
    more » « less
  4. Science and engineering applications are now generating data at an unprecedented rate. From large facilities such as the Large Hadron Collider to portable DNA sequencing devices, these instruments can produce hundreds of terabytes in short periods of time. Researchers and other professionals rely on networks to transfer data between sensing locations, instruments, data storage devices, and computing systems. While general-purpose networks, also referred to as enterprise networks, are capable of transporting basic data, such as e-mails and Web content, they face numerous challenges when transferring terabyte- and petabyte-scale data. At best, transfers of science data on these networks may last days or even weeks. In response to this challenge, the Science Demilitarized Zone (Science DMZ) has been proposed. The Science DMZ is a network or a portion of a network designed to facilitate the transfer of big science data. The main elements of the Science DMZ include: 1) specialized end devices, referred to as data transfer nodes (DTNs), built for sending/receiving data at a high speed over wide area networks; 2) high-throughput, friction-free paths connecting DTNs, instruments, storage devices, and computing systems; 3) performance measurement devices to monitor end-to-end paths over multiple domains; and 4) security policies and enforcement mechanisms tailored for high-performance environments. Despite the increasingly important role of Science DMZs, the literature is still missing a guideline to provide researchers and other professionals with the knowledge to broaden the understanding and development of Science DMZs. This paper addresses this gap by presenting a comprehensive tutorial on Science DMZs. The tutorial reviews fundamental network concepts that have a large impact on Science DMZs, such as router architecture, TCP attributes, and operational security. Then, the tutorial delves into protocols and devices at different layers, from the physical cyberinfrastructure to application-layer tools and security appliances, that must be carefully considered for the optimal operation of Science DMZs. This paper also contrasts Science DMZs with general-purpose networks, and presents empirical results and use cases applicable to current and future Science DMZs. 
    more » « less
  5. Many network/graph structures are continuously monitored by various sensors that are placed at a subset of nodes and edges. The multidimensional data collected from these sensors over time create large-scale graph data in which the data points are highly dependent. Monitoring large-scale attributed networks with thousands of nodes and heterogeneous sensor data to detect anomalies and unusual events is a complex and computationally expensive process. This paper introduces a new generic approach inspired by state-space models for network anomaly detection that can utilize the information from the network topology, the node attributes (sensor data), and the anomaly propagation sets in an integrated manner to analyze the entire network all at once. This article presents how heterogeneous network sensor data can be analyzed to locate the sources of anomalies as well as the anomalous regions in a network, which can be impacted by one or multiple anomalies at any time instance. Experimental results demonstrate the superior performance of our proposed framework in detecting anomalies in attributed graphs. Summary of Contribution: With the increasing availability of large-scale network sensors and rapid advances in artificial intelligence methods, fundamentally new analytical tools are needed that can integrate data collected from sensors across the networks for decision making while taking into account the stochastic and topological dependencies between nodes, sensors, and anomalies. This paper develops a framework to intelligently and efficiently analyze complex and highly dependent data collected from disparate sensors across large-scale network/graph structures to detect anomalies and abnormal behavior in real time. Unlike general purpose (often black-box) machine learning models, this paper proposes a unique framework for network/graph structures that incorporates the complexities of networks and interdependencies between network entities and sensors. Because of the multidisciplinary nature of the paper that involves optimization, machine learning, and system monitoring and control, it can help researchers in both operations research and computer science domains to develop new network-specific computing tools and machine learning frameworks to efficiently manage large-scale network data. 
    more » « less