skip to main content

Title: A topological isomer of the Au 25 (SR) 18 nanocluster
Energetically low-lying structural isomers of the much-studied thiolate-protected gold cluster Au 25 (SR) 18 − are discovered from extensive (80 ns) molecular dynamics (MD) simulations using the reactive molecular force field ReaxFF and confirmed by density functional theory (DFT). A particularly interesting isomer is found, which is topologically connected to the known crystal structure by a low-barrier collective rotation of the icosahedral Au 13 core. The isomerization takes place without breaking of any Au–S bonds. The predicted isomer is essentially iso-energetic with the known Au 25 (SR) 18 − structure, but has a distinctly different optical spectrum. It has a significantly larger collision cross-section as compared to that of the known structure, which suggests it could be detectable in gas phase ion-mobility mass spectrometry.
Authors:
; ; ; ; ;
Award ID(s):
1726332 1213771
Publication Date:
NSF-PAR ID:
10210390
Journal Name:
Chemical Communications
Volume:
56
Issue:
58
Page Range or eLocation-ID:
8087 to 8090
ISSN:
1359-7345
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the excited electron dynamics in [Au 25 (SR) 18 ] −1 (R = CH 3 , C 2 H 5 , C 3 H 7 , MPA, PET) [MPA = mercaptopropanoic acid, PET = phenylethylthiol] nanoparticles to understand how different ligands affect the excited state dynamics in this system. The population dynamics of the core and higher excited states lying in the energy range 0.00–2.20 eV are studied using a surface hopping method with decoherence correction in a real-time DFT approach. All of the ligated clusters follow a similar trend in decay for the core states (S 1more »–S 6 ). The observed time constants are on the picosecond time scale (2–19 ps), which agrees with the experimental time scale, and this study confirms that the time constants observed experimentally could originate from core-to-core transitions and not from core-to-semiring transitions. In the presence of higher excited states, R = H, CH 3 , C 2 H 5 , C 3 H 7 , and PET demonstrate similar relaxations trends whereas R = MPA shows slightly different relaxation of the core states due to a smaller gap between the LUMO+1 and LUMO+2 gap in its electronic structure. The S 1 (HOMO → LUMO) state gives the slowest decay in all ligated clusters, while S 7 has a relatively long decay. Furthermore, separate electron and hole relaxations were performed on the [Au 25 (SCH 3 ) 18 ] −1 nanocluster to understand how independent electron and hole relaxations contribute to the overall relaxation dynamics.« less
  2. The most characteristic feature of planar π-aromatics is the ability to sustain a long-range shielding cone under a magnetic field oriented in a specific direction. In this article, we showed that similar magnetic responses can be found in σ-aromatic and spherical aromatic systems. For [Au 13 ] 5+ , long-range characteristics of the induced magnetic field in the bare icosahedral core are revealed, which are also found in the ligand protected [Au 25 (SH) 18 ] − model, proving its spherical aromatic properties, also supported by the AdNDP analysis. Such properties are given by the 8-ve of the structural coremore »satisfying the Hirsch 2( N + 1) 2 rule, which is also found in the isoelectronic [M@Au 12 ] 4+ core, a part of the [MAu 24 (SR) 18 ] 2− (M = Pd, Pt) cluster. This contrasts with the [M@Au 12 ] 6+ core in [MAu 24 (SR) 18 ] 0 (M = Pd, Pt), representing 6-ve superatoms, which exhibit characteristics of planar σ-aromatics. Our results support the spherical aromatic character of stable superatoms, whereas the 6-ve intermediate electron counts satisfy the 4 N + 2 rule (applicable for both π- and σ-aromatics), showing the reversable and controlled interplay between 3D spherical and 2D σ-aromatic clusters.« less
  3. Using density functional theory (DFT) calculations, we investigated the electrochemical reduction of CO 2 and the competing H 2 evolution reaction on ligand-protected Au 25 nanoclusters (NCs) of different charge states, Au 25 (SR) 18 q ( q = −1, 0, +1). Our results showed that regardless of charge state, CO 2 electroreduction over Au 25 (SR) 18 q NCs was not feasible because of the extreme endothermicity to stabilize the carboxyl (COOH) intermediate. When we accounted for the removal of a ligand (both –SR and –R) from Au 25 (SR) 18 q under electrochemical conditions, surprisingly we found thatmore »this is a thermodynamically feasible process at the experimentally applied potentials with the generated surface sites becoming active centers for electrocatalysis. In every case, the negatively charged NCs, losing a ligand from their surface during electrochemical conditions, were found to significantly stabilize the COOH intermediate, resulting in dramatically enhanced CO 2 reduction. The generated sites for CO 2 reduction were also found to be active for H 2 evolution, which agrees with experimental observations that these two processes compete. Interestingly, we found that the removal of an –R ligand from the negatively charged NC, resulted in a catalyst that was both active and selective for CO 2 reduction. This work highlights the importance of both the overall charge state and generation of catalytically active surface sites on ligand-protected NCs, while elucidating the CO 2 electroreduction mechanisms. Overall, our work rationalizes a series of experimental observations and demonstrates pathways to convert a very stable and catalytically inactive NC to an active electrocatalyst.« less
  4. Thiolate-protected metal nanoclusters (TPNCs) have attracted great interest in the last few decades due to their high stability, atomically precise structure, and compelling physicochemical properties. Among their various applications, TPNCs exhibit excellent catalytic activity for numerous reactions; however, recent work revealed that these systems must undergo partial ligand removal in order to generate active sites. Despite the importance of ligand removal in both catalysis and stability of TPNCs, the role of ligands and metal type in the process is not well understood. Herein, we utilize Density Functional Theory to understand the energetic interplay between metal–sulfur and sulfur–ligand bond dissociation inmore »metal–thiolate systems. We first probe 66 metal–thiolate molecular complexes across combinations of M = Ag, Au, and Cu with twenty-two different ligands (R). Our results reveal that the energetics to break the metal–sulfur and sulfur–ligand bonds are strongly correlated and can be connected across all complexes through metal atomic ionization potentials. We then extend our work to the experimentally relevant [M 25 (SR) 18 ] − TPNC, revealing the same correlations at the nanocluster level. Importantly, we unify our work by introducing a simple methodology to predict TPNC ligand removal energetics solely from calculations performed on metal–ligand molecular complexes. Finally, a computational mechanistic study was performed to investigate the hydrogenation pathways for SCH 3 -based complexes. The energy barriers for these systems revealed, in addition to thermodynamics, that kinetics favor the break of S–R over the M–S bond in the case of the Au complex. Our computational results rationalize several experimental observations pertinent to ligand effects on TPNCs. Overall, our introduced model provides an accelerated path to predict TPNC ligand removal energies, thus aiding towards targeted design of TPNC catalysts.« less
  5. Understanding the critical roles of ligands ( e.g. thiolates, SR) in the formation of metal nanoclusters of specific sizes has long been an intriguing task since the report of ligand exchange-induced transformation of Au 38 (SR) 24 into Au 36 (SR′) 24 . Herein, we conduct a systematic study of ligand exchange on Au 38 (SC 2 H 4 Ph) 24 with 21 incoming thiols and reveal that the size/structure preference is dependent on the substituent site. Specifically, ortho -substituted benzenethiols preserve the structure of Au 38 (SR) 24 , while para - or non-substituted benzenethiols cause its transformation intomore »Au 36 (SR) 24 . Strong electron-donating or -withdrawing groups do not make a difference, but they will inhibit full ligand exchange. Moreover, the crystal structure of Au 38 (SR) 24 (SR = 2,4-dimethylbenzenethiolate) exhibits distinctive π⋯π stacking and “anagostic” interactions (indicated by substantially short Au⋯H distances). Theoretical calculations reveal the increased energies of frontier orbitals for aromatic ligand-protected Au 38 , indicating decreased electronic stability. However, this adverse effect could be compensated for by the Au⋯H–C interactions, which improve the geometric stability when ortho -substituted benzenethiols are used. Overall, this work reveals the substituent site effects based on the Au 38 model, and highlights the long-neglected “anagostic” interactions on the surface of Au-SR NCs which improve the structural stability.« less