skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A topological isomer of the Au 25 (SR) 18 − nanocluster
Energetically low-lying structural isomers of the much-studied thiolate-protected gold cluster Au 25 (SR) 18 − are discovered from extensive (80 ns) molecular dynamics (MD) simulations using the reactive molecular force field ReaxFF and confirmed by density functional theory (DFT). A particularly interesting isomer is found, which is topologically connected to the known crystal structure by a low-barrier collective rotation of the icosahedral Au 13 core. The isomerization takes place without breaking of any Au–S bonds. The predicted isomer is essentially iso-energetic with the known Au 25 (SR) 18 − structure, but has a distinctly different optical spectrum. It has a significantly larger collision cross-section as compared to that of the known structure, which suggests it could be detectable in gas phase ion-mobility mass spectrometry.  more » « less
Award ID(s):
1726332 1213771
PAR ID:
10210390
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
56
Issue:
58
ISSN:
1359-7345
Page Range / eLocation ID:
8087 to 8090
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The crystal structures of 4 ligand‐rotational isomers of Au25(PET)18are presented. Two new ligand‐rotational isomers are revealed, and two higher‐quality structures (allowing complete solution of the ligand shell) of previously solved Au25(PET)18clusters are also presented. One of the structures lacks an inversion center, making it the first chiral Au25(SR)18structure solved. These structures combined with previously published Au25(SR)18structures enable an analysis of the empirical ligand conformation landscape for Au25(SR)18clusters. This analysis shows that the dihedral angles within the PET ligand are restricted to certain observable values, and also that the dihedral angle values are interdependent, in a manner reminiscent of biomolecule dihedral angles such as those in proteins and DNA. The influence of ligand conformational isomerism on optical and electronic properties was calculated, revealing that the ligand conformations affect the nanocluster absorption spectrum, which potentially provides a way to distinguish between isomers at low temperature. 
    more » « less
  2. The most characteristic feature of planar π-aromatics is the ability to sustain a long-range shielding cone under a magnetic field oriented in a specific direction. In this article, we showed that similar magnetic responses can be found in σ-aromatic and spherical aromatic systems. For [Au 13 ] 5+ , long-range characteristics of the induced magnetic field in the bare icosahedral core are revealed, which are also found in the ligand protected [Au 25 (SH) 18 ] − model, proving its spherical aromatic properties, also supported by the AdNDP analysis. Such properties are given by the 8-ve of the structural core satisfying the Hirsch 2( N + 1) 2 rule, which is also found in the isoelectronic [M@Au 12 ] 4+ core, a part of the [MAu 24 (SR) 18 ] 2− (M = Pd, Pt) cluster. This contrasts with the [M@Au 12 ] 6+ core in [MAu 24 (SR) 18 ] 0 (M = Pd, Pt), representing 6-ve superatoms, which exhibit characteristics of planar σ-aromatics. Our results support the spherical aromatic character of stable superatoms, whereas the 6-ve intermediate electron counts satisfy the 4 N + 2 rule (applicable for both π- and σ-aromatics), showing the reversable and controlled interplay between 3D spherical and 2D σ-aromatic clusters. 
    more » « less
  3. Developments in nanotechnology have made the creation of functionalized materials with atomic precision possible. Thiolate-protected gold nanoclusters, in particular, have become the focus of study in literature as they possess high stability and have tunable structure–property relationships. In addition to adjustments in properties due to differences in size and shape, heteroatom doping has become an exciting way to tune the properties of these systems by mixing different atomic d characters from transition metal atoms. Au 24 Pt(SR) 18 clusters, notably, have shown incredible catalytic properties, but fall short in the field of photochemistry. The influence of the Pt dopant on the photoluminescence mechanism and excited state dynamics has been investigated by a few experimental groups, but the origin of the differences that arise due to doping has not been clarified thoroughly. In this paper, density functional theory methods are used to analyze the geometry, optical and photoluminescent properties of Au 24 Pt(SR) 18 in comparison with those of [Au 25 (SR) 18 ] 1− . Furthermore, as these clusters have shown slightly different geometric and optical properties for different ligands, the analysis is completed with both hydrogen and propyl ligands in order to ascertain the role of the passivating ligands. 
    more » « less
  4. null (Ed.)
    We investigate the excited electron dynamics in [Au 25 (SR) 18 ] −1 (R = CH 3 , C 2 H 5 , C 3 H 7 , MPA, PET) [MPA = mercaptopropanoic acid, PET = phenylethylthiol] nanoparticles to understand how different ligands affect the excited state dynamics in this system. The population dynamics of the core and higher excited states lying in the energy range 0.00–2.20 eV are studied using a surface hopping method with decoherence correction in a real-time DFT approach. All of the ligated clusters follow a similar trend in decay for the core states (S 1 –S 6 ). The observed time constants are on the picosecond time scale (2–19 ps), which agrees with the experimental time scale, and this study confirms that the time constants observed experimentally could originate from core-to-core transitions and not from core-to-semiring transitions. In the presence of higher excited states, R = H, CH 3 , C 2 H 5 , C 3 H 7 , and PET demonstrate similar relaxations trends whereas R = MPA shows slightly different relaxation of the core states due to a smaller gap between the LUMO+1 and LUMO+2 gap in its electronic structure. The S 1 (HOMO → LUMO) state gives the slowest decay in all ligated clusters, while S 7 has a relatively long decay. Furthermore, separate electron and hole relaxations were performed on the [Au 25 (SCH 3 ) 18 ] −1 nanocluster to understand how independent electron and hole relaxations contribute to the overall relaxation dynamics. 
    more » « less
  5. Atomically precise nanoclusters play an important role in nanoscale catalysis, photonics, and quantum information science. Their nanochemical properties arise from their unique superatomic electronic structures. As the flagship of atomically precise nanochemistry, the Au 25 (SR) 18 nanocluster exhibits tunable spectroscopic signatures that are sensitive to the oxidation state. This work aims to unravel the physical underpinnings of the spectral progression of Au 25 (SR) 18 nanocluster using variational relativistic time-dependent density functional theory. The investigation will focus on the effects of superatomic spin–orbit coupling, its interplay with Jahn–Teller distortion, and their manifestations in the absorption spectra of Au 25 (SR) 18 nanoclusters of different oxidation states. 
    more » « less