Glucuronidation is a common phase II metabolic process for drugs and xenobiotics which increases their solubility for excretion. Acyl glucuronides (glucuronides of carboxylic acids) present concerns of toxicity as they have been implicated in gastrointestinal toxicity and hepatic failure. Despite the substantial success in the bulk analysis of these species, little is known about their localization in tissues. Herein, we used nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI-MSI) to examine the localization of diclofenac, a widely used nonsteroidal anti-inflammatory drug, and its metabolites in mouse kidney and liver tissues. Nano-DESI allows for label-free imaging with high spatial resolution and sensitivity without special sample pretreatment. Using nano-DESI-MSI, ion images for diclofenac and its major metabolites were produced. MSI data acquired over a broad m/z range showed fairly low signals of the drug and its metabolites. At least an order of magnitude improvement in the signals was obtained using selected ion monitoring (SIM), with m/z windows centered around the low-abundance ions of interest. Using nano-DESI MSI in SIM mode, we observed that diclofenac acyl glucuronide is localized to the inner medulla and hydroxydiclofenac to the cortex of the kidney. The distributions observed for both metabolites closely match the previously reported localizationmore »
Nanospray Desorption Electrospray Ionization (nano-DESI) Mass Spectrometry Imaging of Drift Time-Separated Ions
Simultaneous spatial localization and structural characterization of molecules in complex biological samples
currently represents an analytical challenge for mass spectrometry imaging (MSI) techniques. In this study,
we describe a novel experimental platform, which substantially expands the capabilities and enhances the
depth of chemical information obtained in high spatial resolution MSI experiments performed using nanospray
desorption electrospray ionization (nano-DESI). Specifically, we designed and constructed a portable
nano-DESI MSI platform and coupled it with a drift tube ion mobility spectrometer-mass spectrometer
(IM-MS). Separation of biomolecules observed in MSI experiments based on their drift times provides unique
molecular descriptors necessary for their identification by comparison with databases. Furthermore, it enables
isomer-specific imaging, which is particularly important for unraveling the complexity of biological systems.
Imaging of day 4 pregnant mouse uterine sections using the newly developed nano-DESI-IM-MSI system demonstrates rapid isobaric and isomeric separation and reduced chemical noise in MSI experiments. A direct comparison of the performance of the new nano-DESI-MSI platform operated in the MS mode with the more established nano-DESI-Orbitrap platform indicates a comparable performance of these two systems. A spatial resolution of better than ~16 μm and similar molecular coverage was obtained using both platforms. The structural information provided by the ion mobility separation expands the molecular specificity of high-resolution more »
- Award ID(s):
- 1808136
- Publication Date:
- NSF-PAR ID:
- 10210472
- Journal Name:
- ChemRxiv
- ISSN:
- 2573-2293
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ion mobility spectrometry (IMS) mass spectrometry (MS) centers on the ability to separate gaseous structures by size, charge, shape, and followed by mass-to-charge (m/z). For oligomeric structures, improved separation is hypothesized to be related to the ability to extend structures through repulsive forces between cations electrostatically bonded to the oligomers. Here we show the ability to separate differently branched multiply charged ions of star-branched poly(ethylene glycol) oligomers (up to 2000 Da) regardless of whether formed by electrospray ionization (ESI) charged solution droplets or from charged solid particles produced directly from a surface by matrix-assisted ionization. Detailed structural characterization of isomers of the star-branched compositions was first established using a home-built high-resolution ESI IMS-MS instrument. The doubly charged ions have well-resolved drift times, achieving separation of isomers and also allowing differentiation of star-branched versus linear oligomers. An IMS-MS “snapshot” approach allows visualization of architectural dispersity and (im)purity of samples in a straightforward manner. Analyses capabilities are shown for different cations and ionization methods using commercially available traveling wave IMS-MS instruments. Analyses directly from surfaces using the new ionization processes are, because of the multiply charging, not only associated with the benefits of improved gas-phase separations, relative to that of ions producedmore »
-
The skeletal muscle is a highly heterogeneous tissue comprised of different fiber types with varying contractile and metabolic properties. The complexity in the analysis of skeletal muscle fibers associated with their small size (30–50 μm) and mosaic-like distribution across the tissue tnecessitates the use of high-resolution imaging to differentiate between fiber types. Herein, we use a multimodal approach to characterize the chemical composition of skeletal fibers in a limb muscle, the gastrocnemius. Specifically, we combine high-resolution nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging (MSI) with immunofluorescence (IF)-based fiber type identification. Computational image registration and segmentation approaches are used to integrate the information obtained with both techniques. Our results indicate that the transition between oxidative and glycolytic fibers is associated with shallow chemical gradients (<2.5 fold change in signals). Interestingly, we did not find any fiber type-specific molecule. We hypothesize that these findings might be linked to muscle plasticity thereby facilitating a switch in the metabolic properties of fibers in response to different conditions such as exercise and diet, among others. Despite the shallow chemical gradients, cardiolipins (CLs), acylcarnitines (CAR), monoglycerides (MGs), fatty acids, highly polyunsaturated phospholipids, and oxidized phospholipids, were identified as molecular signatures of oxidative metabolism. In contrast,more »
-
Low molecular weight metabolites are essential for defining the molecular phenotypes of cells. However, spatial metabolomics tools often lack the sensitivity, specify, and spatial resolution to provide comprehensive descriptions of these species in tissue. MALDI imaging mass spectrometry (IMS) of low molecular weight ions is particularly challenging as MALDI matrix clusters are often nominally isobaric with multiple metabolite ions, requiring high resolving power instrumentation or derivatization to circumvent this issue. An alternative to this is to perform ion mobility separation before ion detection, enabling the visualization of metabolites without the interference of matrix ions. Additional difficulties surrounding low weight metabolite visualization include high resolution imaging, while maintaining sufficient ion numbers for broad and representative analysis of the tissue chemical complement. Here, we use MALDI timsTOF IMS to image low molecular weight metabolites at higher spatial resolution than most metabolite MALDI IMS experiments (20 µm) while maintaining broad coverage within the human kidney. We demonstrate that trapped ion mobility spectrometry (TIMS) can resolve matrix peaks from metabolite signal and separate both isobaric and isomeric metabolites with different distributions within the kidney. The added ion mobility data dimension dramatically increased the peak capacity for spatial metabolomics experiments. Through this improved sensitivity, wemore »
-
High resolving power ion mobility (IM) allows for accurate characterization of complex mixtures in high-throughput IM mass spectrometry (IM-MS) experiments. We previously demonstrated that pure component IM-MS data can be extracted from IM unresolved post-IM/collision-induced dissociation (CID) MS data using automated ion mobility deconvolution (AIMD) software [Matthew Brantley, Behrooz Zekavat, Brett Harper, Rachel Mason, and Touradj Solouki, J. Am. Soc. Mass Spectrom. , 2014, 25 , 1810–1819]. In our previous reports, we utilized a quadrupole ion filter for m / z -isolation of IM unresolved monoisotopic species prior to post-IM/CID MS. Here, we utilize a broadband IM-MS deconvolution strategy to remove the m / z -isolation requirement for successful deconvolution of IM unresolved peaks. Broadband data collection has throughput and multiplexing advantages; hence, elimination of the ion isolation step reduces experimental run times and thus expands the applicability of AIMD to high-throughput bottom-up proteomics. We demonstrate broadband IM-MS deconvolution of two separate and unrelated pairs of IM unresolved isomers ( viz. , a pair of isomeric hexapeptides and a pair of isomeric trisaccharides) in a simulated complex mixture. Moreover, we show that broadband IM-MS deconvolution improves high-throughput bottom-up characterization of a proteolytic digest of rat brain tissue. To our knowledge,more »