skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Feature-Based Explanations Don't Help People Detect Misclassifications of Online Toxicity
We present an experimental assessment of the impact of feature attribution-style explanations on human performance in predicting the consensus toxicity of social media posts with advice from an unreliable machine learning model. By doing so we add to a small but growing body of literature inspecting the utility of interpretable machine learning in terms of human outcomes. We also evaluate interpretable machine learning for the first time in the important domain of online toxicity, where fully-automated methods have faced criticism as being inadequate as a measure of toxic behavior. We find that, contrary to expectations, explanations have no significant impact on accuracy or agreement with model predictions, through they do change the distribution of subject error somewhat while reducing the cognitive burden of the task for subjects. Our results contribute to the recognition of an intriguing expectation gap in the field of interpretable machine learning between the general excitement the field has engendered and the ambiguous results of recent experimental work, including this study.  more » « less
Award ID(s):
1717688
PAR ID:
10211065
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Fourteenth International AAAI Conference on Web and Social Media
Volume:
14
Issue:
1
Page Range / eLocation ID:
95-106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent work on explainable clustering allows describing clusters when the features are interpretable. However, much modern machine learning focuses on complex data such as images, text, and graphs where deep learning is used but the raw features of data are not interpretable. This paper explores a novel setting for performing clustering on complex data while simultaneously generating explanations using interpretable tags. We propose deep descriptive clustering that performs sub-symbolic representation learning on complex data while generating explanations based on symbolic data. We form good clusters by maximizing the mutual information between empirical distribution on the inputs and the induced clustering labels for clustering objectives. We generate explanations by solving an integer linear programming that generates concise and orthogonal descriptions for each cluster. Finally, we allow the explanation to inform better clustering by proposing a novel pairwise loss with self-generated constraints to maximize the clustering and explanation module's consistency. Experimental results on public data demonstrate that our model outperforms competitive baselines in clustering performance while offering high-quality cluster-level explanations. 
    more » « less
  2. Active learning has long been a topic of study in machine learning. However, as increasingly complex and opaque models have become standard practice, the process of active learning, too, has become more opaque. There has been little investigation into interpreting what specific trends and patterns an active learning strategy may be exploring. This work expands on the Local Interpretable Model-agnostic Explanations framework (LIME) to provide explanations for active learning recommendations. We demonstrate how LIME can be used to generate locally faithful explanations for an active learning strategy, and how these explanations can be used to understand how different models and datasets explore a problem space over time. In order to quantify the per-subgroup differences in how an active learning strategy queries spatial regions, we introduce a notion of uncertainty bias (based on disparate impact) to measure the discrepancy in the confidence for a model's predictions between one subgroup and another. Using the uncertainty bias measure, we show that our query explanations accurately reflect the subgroup focus of the active learning queries, allowing for an interpretable explanation of what is being learned as points with similar sources of uncertainty have their uncertainty bias resolved. We demonstrate that this technique can be applied to track uncertainty bias over user-defined clusters or automatically generated clusters based on the source of uncertainty. 
    more » « less
  3. Active learning has long been a topic of study in machine learning. However, as increasingly complex and opaque models have become standard practice, the process of active learning, too, has become more opaque. There has been little investigation into interpreting what specific trends and patterns an active learning strategy may be exploring. This work expands on the Local Interpretable Model-agnostic Explanations framework (LIME) to provide explanations for active learning recommendations. We demonstrate how LIME can be used to generate locally faithful explanations for an active learning strategy, and how these explanations can be used to understand how different models and datasets explore a problem space over time. These explanations can also be used to generate batches based on common sources of uncertainty. These regions of common uncertainty can be useful for understanding a model’s current weaknesses. In order to quantify the per-subgroup differences in how an active learning strategy queries spatial regions, we introduce a notion of uncertainty bias (based on disparate impact) to measure the discrepancy in the confidence for a model’s predictions between one subgroup and another. Using the uncertainty bias measure, we show that our query explanations accurately reflect the subgroup focus of the active learning queries, allowing for an interpretable explanation of what is being learned as points with similar sources of uncertainty have their uncertainty bias resolved. We demonstrate that this technique can be applied to track uncertainty bias over user-defined clusters or automatically generated clusters based on the source of uncertainty. We also measure how the choice of initial labeled examples effects groups over time. 
    more » « less
  4. Transparency and accountability have become major concerns for black-box machine learning (ML) models. Proper explanations for the model behavior increase model transparency and help researchers develop more accountable models. Graph neural networks (GNN) have recently shown superior performance in many graph ML problems than traditional methods, and explaining them has attracted increased interest. However, GNN explanation for link prediction (LP) is lacking in the literature. LP is an essential GNN task and corresponds to web applications like recommendation and sponsored search on web. Given existing GNN explanation methods only address node/graph-level tasks, we propose Path-based GNN Explanation for heterogeneous Link prediction (PaGE-Link) that generates explanations with connection interpretability, enjoys model scalability, and handles graph heterogeneity. Qualitatively, PaGE-Link can generate explanations as paths connecting a node pair, which naturally captures connections between the two nodes and easily transfer to human-interpretable explanations. Quantitatively, explanations generated by PaGE-Link improve AUC for recommendation on citation and user-item graphs by 9 - 35% and are chosen as better by 78.79% of responses in human evaluation. 
    more » « less
  5. New technologies have led to vast troves of large and complex data sets across many scientific domains and industries. People routinely use machine learning techniques not only to process, visualize, and make predictions from these big data, but also to make data-driven discoveries. These discoveries are often made using interpretable machine learning, or machine learning models and techniques that yield human-understandable insights. In this article, we discuss and review the field of interpretable machine learning, focusing especially on the techniques, as they are often employed to generate new knowledge or make discoveries from large data sets. We outline the types of discoveries that can be made using interpretable machine learning in both supervised and unsupervised settings. Additionally, we focus on the grand challenge of how to validate these discoveries in a data-driven manner, which promotes trust in machine learning systems and reproducibility in science. We discuss validation both from a practical perspective, reviewing approaches based on data-splitting and stability, as well as from a theoretical perspective, reviewing statistical results on model selection consistency and uncertainty quantification via statistical inference. Finally, we conclude byhighlighting open challenges in using interpretable machine learning techniques to make discoveries, including gaps between theory and practice for validating data-driven discoveries.

     
    more » « less