skip to main content

This content will become publicly available on August 1, 2022

Title: Deep Descriptive Clustering
Recent work on explainable clustering allows describing clusters when the features are interpretable. However, much modern machine learning focuses on complex data such as images, text, and graphs where deep learning is used but the raw features of data are not interpretable. This paper explores a novel setting for performing clustering on complex data while simultaneously generating explanations using interpretable tags. We propose deep descriptive clustering that performs sub-symbolic representation learning on complex data while generating explanations based on symbolic data. We form good clusters by maximizing the mutual information between empirical distribution on the inputs and the induced clustering labels for clustering objectives. We generate explanations by solving an integer linear programming that generates concise and orthogonal descriptions for each cluster. Finally, we allow the explanation to inform better clustering by proposing a novel pairwise loss with self-generated constraints to maximize the clustering and explanation module's consistency. Experimental results on public data demonstrate that our model outperforms competitive baselines in clustering performance while offering high-quality cluster-level explanations.
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. The performance of Adaptive Bitrate (ABR) algorithms for video streaming depends on accurately predicting the download time of video chunks. Existing prediction approaches (i) assume chunk download times are dominated by network throughput; and (ii) apriori cluster sessions (e.g., based on ISP and CDN) and only learn from sessions in the same cluster. We make three contributions. First, through analysis of data from real-world video streaming sessions, we show (i) apriori clustering prevents learning from related clusters; and (ii) factors such as the Time to First Byte (TTFB) are key components of chunk download times but not easily incorporated intomore »existing prediction approaches. Second, we propose Xatu, a new prediction approach that jointly learns a neural network sequence model with an interpretable automatic session clustering method. Xatu learns clustering rules across all sessions it deems relevant, and models sequences with multiple chunk-dependent features (e.g., TTFB) rather than just throughput. Third, evaluations using the above datasets and emulation experiments show that Xatu significantly improves prediction accuracies by 23.8% relative to CS2P (a state-of-the-art predictor). We show Xatu provides substantial performance benefits when integrated with multiple ABR algorithms including MPC (a well studied ABR algorithm), and FuguABR (a recent algorithm using stochastic control) relative to their default predictors (CS2P and a fully connected neural network respectively). Further, Xatu combined with MPC outperforms Pensieve, an ABR based on deep reinforcement learning.« less
  2. Deep learning models have been studied to forecast human events using vast volumes of data, yet they still cannot be trusted in certain applications such as healthcare and disaster assistance due to the lack of interpretability. Providing explanations for event predictions not only helps practitioners understand the underlying mechanism of prediction behavior but also enhances the robustness of event analysis. Improving the transparency of event prediction models is challenging given the following factors: (i) multilevel features exist in event data which creates a challenge to cross-utilize different levels of data; (ii) features across different levels and time steps are heterogeneousmore »and dependent; and (iii) static model-level interpretations cannot be easily adapted to event forecasting given the dynamic and temporal characteristics of the data. Recent interpretation methods have proven their capabilities in tasks that deal with graph-structured or relational data. In this paper, we present a Contextualized Multilevel Feature learning framework, CMF, for interpretable temporal event prediction. It consists of a predictor for forecasting events of interest and an explanation module for interpreting model predictions. We design a new context-based feature fusion method to integrate multiple levels of heterogeneous features. We also introduce a temporal explanation module to determine sequences of text and subgraphs that have crucial roles in a prediction. We conduct extensive experiments on several real-world datasets of political and epidemic events. We demonstrate that the proposed method is competitive compared with the state-of-the-art models while possessing favorable interpretation capabilities.« less
  3. As machine learning black boxes are increasingly being deployed in domains such as healthcare and criminal justice, there is growing emphasis on building tools and techniques for explaining these black boxes in an interpretable manner. Such explanations are being leveraged by domain experts to diagnose systematic errors and underlying biases of black boxes. In this paper, we demonstrate that post hoc explanations techniques that rely on input perturbations, such as LIME and SHAP, are not reliable. Specifically, we propose a novel scaffolding technique that effectively hides the biases of any given classifier by allowing an adversarial entity to craft anmore »arbitrary desired explanation. Our approach can be used to scaffold any biased classifier in such a way that its predictions on the input data distribution still remain biased, but the post hoc explanations of the scaffolded classifier look innocuous. Using extensive evaluation with multiple real world datasets (including COMPAS), we demonstrate how extremely biased (racist) classifiers crafted by our framework can easily fool popular explanation techniques such as LIME and SHAP into generating innocuous explanations which do not reflect the underlying biases.« less
  4. To alleviate the cost of collecting and annotating large-scale "3D object" point cloud data, we propose an unsupervised learning approach to learn features from an unlabeled point cloud dataset by using part contrasting and object clustering with deep graph convolutional neural networks (GCNNs). In the contrast learning step, all the samples in the 3D object dataset are cut into two parts and put into a "part" dataset. Then a contrast learning GCNN (ContrastNet) is trained to verify whether two randomly sampled parts from the part dataset belong to the same object. In the cluster learning step, the trained ContrastNet ismore »applied to all the samples in the original 3D object dataset to extract features, which are used to group the samples into clusters. Then another GCNN for clustering learning (ClusterNet) is trained from the orignal 3D data to predict the cluster IDs of all the training samples. The contrasting learning forces the ContrastNet to learn semantic features of objects, while the ClusterNet improves the quality of learned features by being trained to discover objects that belong to the same semantic categories by using cluster IDs. We have conducted extensive experiments to evaluate the proposed framework on point cloud classification tasks. The proposed unsupervised learning approach obtains comparable performance to the state-of-the-art with heavier shape auto-encoding unsupervised feature extraction methods. We have also tested the networks on object recognition using partial 3D data, by simulating occlusions and perspective views, and obtained practically useful results. The code of this work is publicly available at:« less
  5. Active learning has long been a topic of study in machine learning. However, as increasingly complex and opaque models have become standard practice, the process of active learning, too, has become more opaque. There has been little investigation into interpreting what specific trends and patterns an active learning strategy may be exploring. This work expands on the Local Interpretable Model-agnostic Explanations framework (LIME) to provide explanations for active learning recommendations. We demonstrate how LIME can be used to generate locally faithful explanations for an active learning strategy, and how these explanations can be used to understand how different models andmore »datasets explore a problem space over time. These explanations can also be used to generate batches based on common sources of uncertainty. These regions of common uncertainty can be useful for understanding a model’s current weaknesses. In order to quantify the per-subgroup differences in how an active learning strategy queries spatial regions, we introduce a notion of uncertainty bias (based on disparate impact) to measure the discrepancy in the confidence for a model’s predictions between one subgroup and another. Using the uncertainty bias measure, we show that our query explanations accurately reflect the subgroup focus of the active learning queries, allowing for an interpretable explanation of what is being learned as points with similar sources of uncertainty have their uncertainty bias resolved. We demonstrate that this technique can be applied to track uncertainty bias over user-defined clusters or automatically generated clusters based on the source of uncertainty. We also measure how the choice of initial labeled examples effects groups over time.« less