skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental and Analytical Nonzero-Sum Differential Game-Based Control of a 7-DOF Robotic Manipulator
We formulate a Nash-based feedback control law for an Euler-Lagrange system to yield a solution to non-cooperative differential game. The robot manipulators are broadly utilized in industrial units on the account of their reliable, fast, and precise motions, while consuming a significant lumped amount of energy. Therefore, an optimal control strategy needs to be implemented in addressing efficiency issues, while delivering accuracy obligation. As a case study, we here focus on a 7-DOF robot manipulator through formulating a two-player feedback nonzero-sum differential game. First, coupled Euler-Lagrangian dynamic equations of the manipulator are briefly presented. Then, we formulate the feedback Nash equilibrium solution in order to achieve perfect trajectory tracking. Finally, the performance of the Nash-based feedback controller is analytically and experimentally examined. Simulation and experimental results reveal that the control law yields almost perfect tracking and achieves closed-loop stability.  more » « less
Award ID(s):
1823951
PAR ID:
10211092
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ASME Dynamic Systems and Control Conference
Volume:
1
ISSN:
2151-1853
Page Range / eLocation ID:
V001T04A001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We formulate a Nash-based feedback control law for an Euler–Lagrange system to yield a solution to noncooperative differential game. The robot manipulators are broadly used in industrial units on the account of their reliable, fast, and precise motions, while consuming a significant lumped amount of energy. Therefore, an optimal control strategy needs to be implemented in addressing efficiency issues, while delivering accuracy obligation. As a case study, we here focus on a 7-DOF robot manipulator through formulating a two-player feedback nonzero-sum differential game. First, coupled Euler–Lagrangian dynamic equations of the manipulator are briefly presented. Then, we formulate the feedback Nash equilibrium solution to achieve perfect trajectory tracking. Finally, the performance of the Nash-based feedback controller is analytically and experimentally examined. Simulation and experimental results reveal that the control law yields almost perfect tracking and achieves closed-loop stability. 
    more » « less
  2. We propose a nonlinear hybrid dual quaternion feedback control law for multibody spacecraft-mounted robotic systems (SMRSs) pose control. Indeed, screw theory expressed via a unit dual quaternion representation and its associated algebra can be used to compactly formulate both the forward (position and velocity) kinematics and pose control of [Formula: see text]-degree-of-freedom robot manipulators. Recent works have also established the necessary theory for expressing the rigid multibody dynamics of an SMRS in dual quaternion algebra. Given the established framework for expressing both kinematics and dynamics of general [Formula: see text]-body SMRSs via dual quaternions, this paper proposes a dual quaternion control law that achieves simultaneous global asymptotically stable pose tracking for the end effector and the spacecraft base of an SMRS. The proposed hybrid control law is robust to chattering caused by noisy feedback and avoids the unwinding phenomenon innate to continuous-based (dual) quaternion controllers. Additionally, an actuator allocation technique is proposed in the neighborhood of system singularities to ensure bounded control inputs, with minimum deviation from the specified spacecraft base and end-effector trajectories during controller execution. 
    more » « less
  3. null (Ed.)
    In this paper, a novel strategy is designed for trajectory control of a multi-section continuum robot in three-dimensional space to achieve accurate orientation, curvature, and section length tracking. The formulation connects the continuum manipulator dynamic behavior to a virtual discrete-jointed robot whose degrees-of-freedom are directly mapped to those of a continuum robot section. Based on this connection, a computed torque control architecture is developed for the virtual robot, for which inverse kinematics and dynamic equations are constructed and exploited, with appropriate transformations developed for implementation on the continuum robot. The control algorithm is implemented on a six degree-of-freedom two-section OctArm continuum manipulator. Experimental results show that the proposed method managed simultaneous extension/contraction, bending, and torsion actions on multi-section continuum robots with decent tracking performance (steady state arc length and curvature tracking error of merely 3.3mm and 0.13m-1, respectively). These results demonstrate that the proposed method can be applied to multi-section continuum manipulator and perform complex maneuvers within a nonlinear setting. 
    more » « less
  4. We formulate a predictor-based controller for a high-DOF manipulator to compensate a time-invariant input delay during a pick-and-place task. Robot manipulators are widely used in tele-manipulation systems on the account of their reliable, fast, and precise motions while they are subject to large delays. Using common control algorithms on such delay systems can cause not only poor control performance, but also catastrophic instability in engineering applications. Therefore, delays need to be compensated in designing robust control laws. As a case study, we focus on a 7-DOF Baxter manipulator subject to three different input delays. First, delay-free dynamic equations of the Baxter manipulator are derived using the Lagrangian method. Then, we formulate a predictor-based controller, in the presence of input delay, in order to track desired trajectories. Finally, the effects of input delays in the absence of a robust predictor are investigated, and then the performance of the predictor-based controller is experimentally evaluated to reveal robustness of the algorithm formulated. Simulation and experimental results demonstrate that the predictor-based controller effectively compensates input delays and achieves closed-loop stability. 
    more » « less
  5. null (Ed.)
    In this paper, we study the analytical and experimental control of a seven degrees-of-freedom (7DOF) robot manipulator. A model-free decentralized adaptive control strategy is presented for the tracking control of the manipulator. The problem formulation and experimental results demonstrate the computational efficiency and simplicity of the proposed method. The results presented here are one of the first known experiments on a redundant 7DOF robot. The efficacy of the adaptive decentralized controller is demonstrated experimentally by using the Baxter robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the versatility, tracking performance, and computational efficiency of this method. 
    more » « less