Image segmentation is a fundamental task that has benefited from recent advances in machine learning. One type of segmentation, of particular interest to computer vision, is that of urban segmentation. Although recent solutions have leveraged on deep neural networks, approaches usually do not consider regularities appearing in facade structures (e.g., windows are often in groups of similar alignment, size, or spacing patterns) as well as additional urban structures such as building footprints and roofs. Moreover, both satellite and street-view images are often noisy and occluded, thus getting the complete structure segmentation from a partial observation is difficult. Our key observations are that facades and other urban structures exhibit regular structures, and additional views are often available. In this paper, we present a novel framework (RFCNet) that consists of three modules to achieve multiple goals. Specifically, we propose Regularization to improve the regularities given an initial segmentation, Fusion that fuses multiple views of the segmentation, and Completion that can infer the complete structure if necessary. Experimental results show that our method outperforms previous state-of-the-art methods quantitatively and qualitatively for multiple facade datasets. Furthermore, by applying our framework to other urban structures (e.g., building footprints and roofs), we demonstrate our approach can be generalized to various pattern types.
more »
« less
Synthesis and Completion of Facades from Satellite Imagery
Automatic satellite-based reconstruction enables large and widespread creation of urban areas. However, satellite imagery is often noisy and incomplete, and is not suitable for reconstructing detailed building facades. We present a machine learning-based inverse procedural modeling method to automatically create synthetic facades from satellite imagery. Our key observation is that building facades exhibit regular, grid-like structures. Hence, we can overcome the low-resolution, noisy, and partial building data obtained from satellite imagery by synthesizing the underlying facade layout. Our method infers regular facade details from satellite-based image-fragments of a building, and applies them to occluded or under-sampled parts of the building, resulting in plausible, crisp facades. Using urban areas from six cities, we compare our approach to several state-of-the-art image completion/in-filling methods and our approach consistently creates better facade images.
more »
« less
- NSF-PAR ID:
- 10211187
- Date Published:
- Journal Name:
- European Conference on Computer Vision
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Automatic creation of lightweight 3D building models from satellite image data enables large and widespread 3D interactive urban rendering. Towards this goal, we present an inverse procedural modeling method to automatically create building envelopes from satellite imagery. Our key observation is that buildings exhibit regular properties. Hence, we can overcome the low-resolution, noisy, and partial building data obtained from satellite by using a two stage inverse procedural modeling technique. Our method takes in point cloud data obtained from multi-view satellite stereo processing and produces a crisp and regularized building envelope suitable for fast rendering and optional projective texture mapping. Further, our results show highly complete building models with quality superior to that of other compared-to approaches.more » « less
-
Urban and environmental researchers seek to obtain building features (e.g., building shapes, counts, and areas) at large scales. However, blurriness, occlusions, and noise from prevailing satellite images severely hinder the performance of image segmentation, super-resolution, or deep-learning-based translation networks. In this article, we combine globally available satellite images and spatial geometric feature datasets to create a generative modeling framework that enables obtaining significantly improved accuracy in per-building feature estimation and the generation of visually plausible building footprints. Our approach is a novel design that compensates for the degradation present in satellite images by using a novel deep network setup that includes segmentation, generative modeling, and adversarial learning for instance-level building features. Our method has proven its robustness through large-scale prototypical experiments covering heterogeneous scenarios from dense urban to sparse rural. Results show better quality over advanced segmentation networks for urban and environmental planning, and show promise for future continental-scale urban applications.more » « less
-
null (Ed.)Recent advances in big spatial data acquisition and deep learning allow novel algorithms that were not possible several years ago. We introduce a novel inverse procedural modeling algorithm for urban areas that addresses the problem of spatial data quality and uncertainty. Our method is fully automatic and produces a 3D approximation of an urban area given satellite imagery and global-scale data, including road network, population, and elevation data. By analyzing the values and the distribution of urban data, e.g., parcels, buildings, population, and elevation, we construct a procedural approximation of a city at a large-scale. Our approach has three main components: (1) procedural model generation to create parcel and building geometries, (2) parcel area estimation that trains neural networks to provide initial parcel sizes for a segmented satellite image of a city block, and (3) an optional optimization that can use partial knowledge of overall average building footprint area and building counts to improve results. We demonstrate and evaluate our approach on cities around the globe with widely different structures and automatically yield procedural models with up to 91,000 buildings, and spanning up to 150 km 2 . We obtain both a spatial arrangement of parcels and buildings similar to ground truth and a distribution of building sizes similar to ground truth, hence yielding a statistically similar synthetic urban space. We produce procedural models at multiple scales, and with less than 1% error in parcel and building areas in the best case as compared to ground truth and 5.8% error on average for tested cities.more » « less
-
Geographic information systems (GIS) provide accurate maps of terrain, roads, waterways, and building footprints and heights. Aircraft, particularly small unmanned aircraft systems (UAS), can exploit this and additional information such as building roof structure to improve navigation accuracy and safely perform contingency landings particularly in urban regions. However, building roof structure is not fully provided in maps. This paper proposes a method to automatically label building roof shape from publicly available GIS data. Satellite imagery and airborne LiDAR data are processed and manually labeled to create a diverse annotated roof image dataset for small to large urban cities. Multiple convolutional neural network (CNN) architectures are trained and tested, with the best performing networks providing a condensed feature set for support vector machine and decision tree classifiers. Satellite image and LiDAR data fusion is shown to provide greater classification accuracy than using either data type alone. Model confidence thresholds are adjusted leading to significant increases in models precision. Networks trained from roof data in Witten, Germany and Manhattan (New York City) are evaluated on independent data from these cities and Ann Arbor, Michigan.more » « less