skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Human-Robot Collaboration and Dialogue for Fault Recovery on Hierarchical Tasks
Robotic systems typically follow a rigid approach to task execution, in which they perform the necessary steps in a specific order, but fail when having to cope with issues that arise during execution. We propose an approach that handles such cases through dialogue and human-robot collaboration. The proposed approach contributes a hierarchical control architecture that 1) autonomously detects and is cognizant of task execution failures, 2) initiates a dialogue with a human helper to obtain assistance, and 3) enables collaborative human-robot task execution through extended dialogue in order to 4) ensure robust execution of hierarchical tasks with complex constraints, such as sequential, non-ordering, and multiple paths of execution. The architecture ensures that the constraints are adhered to throughout the entire task execution, including during failures. The recovery of the architecture from issues during execution is validated by a human-robot team on a building task.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference on Social Robotics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper addresses the problem of dynamic allocation of robot resources to tasks with hierarchical representations and multiple types of execution constraints, with the goal of enabling single-robot multitasking capabilities. Although the vast majority of robot platforms are equipped with more than one sensor (cameras, lasers, sonars) and several actuators (wheels/legs, two arms), which would in principle allow the robot to concurrently work on multiple tasks, existing methods are limited to allocating robots in their entirety to only one task at a time. This approach employs only a subset of a robot's sensors and actuators, leaving other robot resources unused. Our aim is to enable a robot to make full use of its capabilities by having an individual robot multitask, distributing its sensors and actuators to multiple concurrent activities. We propose a new architectural framework based on Hierarchical Task Trees that supports multitasking through a new representation of robot behaviors that explicitly encodes the robot resources (sensors and actuators) and the environmental conditions needed for execution. This architecture was validated on a two-arm, mobile, PR2 humanoid robot, performing tasks with multiple types of execution constraints. 
    more » « less
  2. We are developing a system for long term Semi-Automated Rehabilitation At the Home (SARAH) that relies on low-cost and unobtrusive video-based sensing. We present a cyber-human methodology used by the SARAH system for automated assessment of upper extremity stroke rehabilitation at the home. We propose a hierarchical model for automatically segmenting stroke survivor's movements and generating training task performance assessment scores during rehabilitation. The hierarchical model fuses expert therapist knowledge-based approaches with data-driven techniques. The expert knowledge is more observable in the higher layers of the hierarchy (task and segment) and therefore more accessible to algorithms incorporating high level constraints relating to activity structure (i.e., type and order of segments per task). We utilize an HMM and a Decision Tree model to connect these high level priors to data driven analysis. The lower layers (RGB images and raw kinematics) need to be addressed primarily through data driven techniques. We use a transformer based architecture operating on low-level action features (tracking of individual body joints and objects) and a Multi-Stage Temporal Convolutional Network(MS-TCN) operating on raw RGB images. We develop a sequence combining these complimentary algorithms effectively, thus encoding the information from different layers of the movement hierarchy. Through this combination, we produce a robust segmentation and task assessment results on noisy, variable and limited data, which is characteristic of low cost video capture of rehabilitation at the home. Our proposed approach achieves 85% accuracy in per-frame labeling, 99% accuracy in segment classification and 93% accuracy in task completion assessment. Although the methodology proposed in this paper applies to upper extremity rehabilitation using the SARAH system, it can potentially be used, with minor alterations, to assist automation in many other movement rehabilitation contexts (i.e., lower extremity training for neurological accidents). 
    more » « less
  3. null (Ed.)
    This paper presents a novel approach to robot task learning from language-based instructions, which focuses on increasing the complexity of task representations that can be taught through verbal instruction. The major proposed contribution is the development of a framework for directly mapping a complex verbal instruction to an executable task representation, from a single training experience. The method can handle the following types of complexities: 1) instructions that use conjunctions to convey complex execution constraints (such as alternative paths of execution, sequential or nonordering constraints, as well as hierarchical representations) and 2) instructions that use prepositions and multiple adjectives to specify action/object parameters relevant for the task. Specific algorithms have been developed for handling conjunctions, adjectives and prepositions as well as for translating the parsed instructions into parameterized executable task representations. The paper describes validation experiments with a PR2 humanoid robot learning new tasks from verbal instruction, as well as an additional range of utterances that can be parsed into executable controllers by the proposed system. 
    more » « less
  4. We consider multi-robot service scenarios, where tasks appear at any time and in any location of the working area. A solution to such a service task problem requires finding a suitable task assignment and a collision-free trajectory for each robot of a multi-robot team. In cluttered environments, such as indoor spaces with hallways, those two problems are tightly coupled. We propose a decentralized algorithm for simultaneously solving both problems, called Hierarchical Task Assignment and Path Finding (HTAPF). HTAPF extends a previous bio-inspired Multi-Robot Task Allocation (MRTA) framework [1]. In this work, task allocation is performed on an arbitrarily deep hierarchy of work areas and is tightly coupled with a fully distributed version of the priority-based planning paradigm [12], using only broadcast communication. Specifically, priorities are assigned implicitly by the order in which data is received from nearby robots. No token passing procedure or specific schedule is in place ensuring robust execution also in the presence of limited probabilistic communication and robot failures. 
    more » « less
  5. null (Ed.)
    Complex service robotics scenarios entail unpredictable task appearance both in space and time. This requires robots to continuously relocate and imposes a trade-off between motion costs and efficiency in task execution. In such scenarios, multi-robot systems and even swarms of robots can be exploited to service different areas in parallel. An efficient deployment needs to continuously determine the best allocation according to the actual service needs, while also taking relocation costs into account when such allocation must be modified. For large scale problems, centrally predicting optimal allocations and movement paths for each robot quickly becomes infeasible. Instead, decentralized solutions are needed that allow the robotic system to self-organize and adaptively respond to the task demands. In this paper, we propose a distributed and asynchronous approach to simultaneous task assignment and path planning for robot swarms, which combines a bio-inspired collective decision-making process for the allocation of robots to areas to be serviced, and a search-based path planning approach for the actual routing of robots towards tasks to be executed. Task allocation exploits a hierarchical representation of the workspace, supporting the robot deployment to the areas that mostly require service. We investigate four realistic environments of increasing complexity, where each task requires a robot to reach a location and work for a specific amount of time. The proposed approach improves over two different baseline algorithms in specific settings with statistical significance, while showing consistently good results overall. Moreover, the proposed solution is robust to limited communication and robot failures. 
    more » « less