skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Benthic invaders control the phosphorus cycle in the world’s largest freshwater ecosystem
The productivity of aquatic ecosystems depends on the supply of limiting nutrients. The invasion of the Laurentian Great Lakes, the world’s largest freshwater ecosystem, by dreissenid (zebra and quagga) mussels has dramatically altered the ecology of these lakes. A key open question is how dreissenids affect the cycling of phosphorus (P), the nutrient that limits productivity in the Great Lakes. We show that a single species, the quagga mussel, is now the primary regulator of P cycling in the lower four Great Lakes. By virtue of their enormous biomass, quagga mussels sequester large quantities of P in their tissues and dramatically intensify benthic P exchanges. Mass balance analysis reveals a previously unrecognized sensitivity of the Great Lakes ecosystem, where P availability is now regulated by the dynamics of mussel populations while the role of the external inputs of phosphorus is suppressed. Our results show that a single invasive species can have dramatic consequences for geochemical cycles even in the world’s largest aquatic ecosystems. The ongoing spread of dreissenids across a multitude of lakes in North America and Europe is likely to affect carbon and nutrient cycling in these systems for many decades, with important implications for water quality management.  more » « less
Award ID(s):
1737368
PAR ID:
10211218
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
6
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2008223118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such difference are unknown. We examined whether quagga mussel shell morphology could be induced by three environmental variables through developmental plasticity. We predicted that shallow-water conditions (high temperature, food quantity, water motion) would yield a morphotype typical of wild quagga mussels from shallow habitats, while deep-water conditions (low temperature, food quantity, water motion) would yield a morphotype present in deep habitats. We tested this prediction by examining shell morphology and growth rate of quagga mussels collected from shallow and deep habitats and reared under common-garden treatments that manipulated the three variables. Shell morphology was quantified using the polar moment of inertia. Of the variables tested, temperature had the greatest effect on shell morphology. Higher temperature (∼18–20°C) yielded a morphotype typical of wild shallow mussels regardless of the levels of food quantity or water motion. In contrast, lower temperature (∼6–8°C) yielded a morphotype approaching that of wild deep mussels. If shell morphology has functional consequences in particular habitats, a plastic response might confer quagga mussels with a greater ability than zebra mussels to colonize a wider range of habitats within the Great Lakes. 
    more » « less
  2. SUMMARY While the invasive zebra mussel Dreissena polymorpha has rapidly spread throughout the Great Lakes and inland waterways, it is being displaced by the quagga mussel Dreissena bugensis in shallow water habitats. However, zebra mussels remain dominant in areas with higher water velocity. We hypothesized that the persistence of zebra over quagga mussels in habitats with higher water velocity might result from greater rate and strength of byssal thread attachment. We examined whether zebra mussels relative to quagga mussels have: (1) higher byssal thread synthesis rate, (2) lower dislodgment in flow and (3) greater mechanical force required for detachment from substrate. Specifically, we examined byssal thread synthesis rate and dislodgment of both species in response to water velocities of 0, 50, 100 and 180 cm s–1. Byssal thread synthesis rate was significantly higher for zebra than for quagga mussels at all velocities. Dislodgment from the substrate increased for both species with increasing velocity but was significantly lower for zebra than for quagga mussels. We also tested the mechanical force to detach mussels after short (32 h) and long (two and three months) periods of attachment on hard substrate. Detachment force was significantly higher for zebra than for quagga mussels only after short-term attachment. Higher byssal thread synthesis rate in zebra mussels was a likely factor that minimized their dislodgment in flow and increased short-term attachment strength. Differences in byssal thread synthesis rate between the two species might partly account for the ability of zebra mussels to maintain dominance over quagga mussels in habitats with high velocities. 
    more » « less
  3. Aggregations of freshwater mussels create patches that can benefit other organisms through direct habitat alterations or indirect stimulation of trophic resources via nutrient excretion and biodeposition. Spent shells and the shells of living mussels add complexity to benthic environments by providing shelter from predators and increasing habitat heterogeneity. Combined, these factors can increase primary productivity and macroinvertebrate abundance in patches where mussel biomass is high, providing valuable subsidies for some fishes and influencing their distributions. We performed a 12-wk field experiment to test whether fish distributions within mussel beds were most influenced by the presence of subsidies associated with live mussels or the biogenic habitat of shells. We used remote underwater video recordings to quantify fish occurrences at fifty 0.25-m2 experimental enclosures stocked with either live mussels (2-species assemblages), sham mussels (shells filled with sand), or sediment only. The biomass of algae and benthic macroinvertebrates increased over time but were uninfluenced by treatment. We detected more fish in live mussel and sham treatments than in the sediment-only treatment but found no difference between live mussel and sham treatments. Thus, habitat provided by mussel shells may be the primary benefit to fishes that co-occur with mussels. Increased spatiotemporal overlap between fish and mussels might strengthen ecosystem effects, such as nutrient cycling, and the role of both fish and mussels in freshwater ecosystems 
    more » « less
  4. Abstract In freshwater ecosystems, consumers can play large roles in nutrient cycling by modifying nutrient availability for autotrophic and heterotrophic microbes. Nutrients released by consumers directly supportgreen food websbased on primary production andbrown food websbased on decomposition. While much research has focused on impacts of consumer driven nutrient dynamics on green food webs, less attention has been given to studying the effects of these dynamics on brown food webs.Freshwater mussels (Bivalvia: Unionidae) can dominate benthic biomass in aquatic systems as they often occur in dense aggregations that create biogeochemical hotspots that can control ecosystem structure and function through nutrient release. However, despite functional similarities as filter‐feeders, mussels exhibit variation in nutrient excretion and tissue stoichiometry due in part to their phylogenetic origin. Here, we conducted a mesocosm experiment to evaluate how communities of three phylogenetically distinct species of mussels individually and collectively influence components of green and brown food webs.We predicted that the presence of mussels would elicit a positive response in both brown and green food webs by providing nutrients and energy via excretion and biodeposition to autotrophic and heterotrophic microbes. We also predicted that bottom‐up provisioning of nutrients would vary among treatments as a result of stoichiometric differences of species combinations, and that increasing species richness would lead to greater ecosystem functioning through complementarity resulting from greater trait diversity.Our results show that mussels affect the functioning of green and brown food webs through altering nutrient availability for both autotrophic and heterotrophic microbes. These effects are likely to be driven by phylogenetic constraints on tissue nutrient stoichiometry and consequential excretion stoichiometry, which can have functional effects on ecosystem processes. Our study highlights the importance of measuring multiple functional responses across a gradient of diversity in ecologically similar consumers to gain a more holistic view of aquatic food webs. 
    more » « less
  5. SUMMARY Although zebra mussels (Dreissena polymorpha) initially colonized shallow habitats within the North American Great Lakes, quagga mussels (Dreissena bugensis) are becoming dominant in both shallow- and deep-water habitats. Shell morphology differs among zebra, shallow quagga and deep quagga mussels but functional consequences of such differences are unknown. We examined effects of shell morphology on locomotion for the three morphotypes on hard (typical of shallow habitats) and soft (characteristic of deep habitats) sedimentary substrates. We quantified morphology using the polar moment of inertia, a parameter used in calculating kinetic energy that describes shell area distribution and resistance to rotation. We quantified mussel locomotion by determining the ratio of rotational (Krot) to translational kinetic energy (Ktrans). On hard substrate, Krot:Ktrans of deep quagga mussels was fourfold greater than for the other morphotypes, indicating greater energy expenditure in rotation relative to translation. On soft substrate, Krot:Ktrans of deep quagga mussels was approximately one-third of that on hard substrate, indicating lower energy expenditure in rotation on soft substrate. Overall, our study demonstrates that shell morphology correlates with differences in locomotion (i.e. Krot:Ktrans) among morphotypes. Although deep quagga mussels were similar to zebra and shallow quagga mussels in terms of energy expenditure on sedimentary substrate, their morphology was energetically maladaptive for linear movement on hard substrate. As quagga mussels can possess two distinct morphotypes (i.e. shallow and deep morphs), they might more effectively utilize a broader range of substrates than zebra mussels, potentially enhancing their ability to colonize a wider range of habitats. 
    more » « less