Results will be presented from a 5-year NSF S-STEM scholarship program for academically talented women in engineering with financial need. Elizabethtown College’s Engineering Practices with Impact Cohort (EPIC) Scholarship program was launched with an NSF S-STEM grant awarded in 2013. The program developed a pathway for academically talented and financially needy women interested in engineering to successfully enter the STEM workforce. The program targeted three critical stages: 1) recruiting talented women into the ABET-accredited engineering program and forming a cohort of scholars, 2) leveraging and expanding existing high impact practices (including an established matriculation program, living-learning community, collaborative learning model, focused mentoring, and undergraduate research) to support women scholars during their college experience, and 3) mentoring scholars as they transitioned to the STEM workforce or graduate programs. The goals of the scholarship program were to increase the number and percent of women entering engineering at our institution and to increase the graduation/employment rate of EPIC scholars beyond that of current engineering students and beyond that of national levels for women engineers. At the end of this grant, we have roughly doubled the number of women (22.7%) and underrepresented minority students (14%) in the engineering program. This is comparable to the 2016 national average of 20.9% women and 20.6% underrepresented minority bachelor's graduates in engineering. We have also remained at a consistently high level of enrollment and retention of low-income (18.6% Pell-eligible) and first-generation college students (61%). 83% of the scholars have been retained in the engineering program or have graduated with an engineering degree, which is above the institutional and national average. The remaining scholars transferred to another major but have been retained at the institution. All of the scholars participated in a living-learning community, tutoring, focused mentoring, and a women engineers club. Almost all participated in a pre-matriculation program. 17% of the scholars additionally had an undergraduate research experience and 28% studied abroad. 100% of the scholars had engineering workforce jobs or graduate school acceptances at the time of graduation. This program successfully increased the population of underrepresented minority, low-income, and first-generation women entering the engineering workforce.
more »
« less
CS@Mines Successful S-STEM Scholarship Ecosystem for Low-Income and Underrepresented Students
The primary purpose of PATHS (Path Ambassadors to High Success), an NSF-funded S-STEM scholarship program, is to create new pathways and strengthen existing pathways for academically talented, low-income Colorado high school and community college students to study computer science (CS) at Colorado School of Mines (Mines). PATHS has achieved the following major project goals: 1) Increase number of academically talented, low-income students studying CS in Colorado; 4) Increase retention of these students; 3) Establish an active on-campus community to support PATHS scholars and similar students; 4) Engage scholars to perform CS recruitment and outreach at area high schools and community colleges; 5) Evaluate PATHS activities through comparative analysis to provide new insights on best practices for attracting and retaining academically talented, low-income CS students; 6) Broaden participation of historically underrepresented groups in CS; and 7) Develop a new flexible degree program combining other STEM fields and CS. PATHS students are diverse (e.g., 40.8% from under- represented groups in computing) and academically successful (e.g., mean GPA is 3.4). Thus far, the program has awarded scholarships to 49 students and retained 93.9% of the students. Of the 49 students, six have graduated and three of the six have also pursued a CS Master’s degree.
more »
« less
- Award ID(s):
- 1644198
- PAR ID:
- 10211474
- Date Published:
- Journal Name:
- 52nd ACM Technical Symposium on Computer Science Education (SIGCSE '21)
- Page Range / eLocation ID:
- 1-7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This S-STEM project addresses the national need for a well-educated engineering and computing workforce by supporting the retention and graduation of low-income students with demonstrated financial need and strong academic potential. The project focuses on creating pathways that allow students to progress from an associate's and bachelor's degree (at the regional campus) in technology to a bachelor's and possibly even a master's degree in engineering and computing at the main campus. This has been achieved by creating curricular pathways and providing infrastructure and support to encourage higher degree attainment by participating students while reducing graduation time. Over six years, this project aims to provide scholarships to 132 full-time students pursuing Associate, Bachelor's, and Master's degrees in Engineering, Computer Science, and related fields. So far, through this project, three cohorts of students have been recruited through a holistic review process, with recruitment strategies involving high school visits, outreach events, and collaborations with community colleges. As of Fall 2024, 45 students have been funded, with $256,125 in scholarships awarded. The diverse body of S-STEM scholars includes ~27% female, 11% African American/Black, 11% Asian, and ~7% Hispanic students. So far, ten students have graduated with a bachelor's degree who started with an associate's degree, and one student who started with an associate degree has completed a master's program. This supporting paper associated with the poster highlights the various aspects of this project, including recruitment strategies, curricular pathway development, cohort building, etc. We anticipate that this project will generate data on recruiting and retaining low-income, academically talented students, with findings related to fostering community and identity among scholarship recipients through mentoring and peer support, promoting excellent retention and workforce development.more » « less
-
IRE STEM Scholars program contributes to the national need for well-educated STEM professionals by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students. The IRE STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with a Bachelor of Science degree in engineering and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce; it is during this semester that students receive the S-STEM scholarship. During the last two years of their education, IRE students work in paid engineering co-ops, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project financially supports low-income students during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project provides personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and subjective wellbeing (or mental and physical health). This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? Currently in its second year, the project has supported 20 students, including 6 students on co-op. These six students have been interviewed on their sense of belonging in engineering during their co-op experiences, and have provided multiple survey data points describing IRE students’ experiences in co-op and overall sense of belonging. These IRE STEM Scholars program participant-specific data along with survey data documenting the co-op experiences of all IRE students describe how co-op experiences can be used to provide a financially responsible pathway to an engineering degree for low-income, high achieving students. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.more » « less
-
This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.more » « less
-
The Alternative Pathways to Excellence (APEX) program at the University of St. Thomas is an NSF funded S-STEM Track 2 project that seeks to strengthen efforts to recruit and retain STEM transfer students by integrating financial, academic, and practical supports. The APEX program provides student support services, formal and informal mentoring, curricular and co-curricular supports, and cohort building activities all formulated to create accessible pathways into engineering careers for a population of academically talented students with low income and high unmet financial need. The goals of this program are to increase recruitment by partnering with five regional community colleges, to award S-STEM scholarships of up to $10,000 annually to cohorts of 4-6 students each year, to increase retention by developing retention-friendly supports, and to graduate APEX scholars who go on to meaningfully contribute to fueling innovation in industry and/or academic post-graduate study. Generation of knowledge is based on studying the APEX program as a model and evaluating qualitative and quantitative data surrounding students’ successful transitions to a four-year institution. Program evaluation is focused on understanding how well APEX recruitment strategies contribute to increasing the number of low income and underrepresented students who transfer into the University of St. Thomas Engineering program and understanding the extent to which retention efforts are most beneficial to retaining students. In this work, we showcase initial program activities, and the initial results based on the first year of study and our first cohort of scholars.more » « less
An official website of the United States government

