Leveraging Innovation and Optimizing Nurturing in STEM (NSF S-STEM #2130022, known locally as LION STEM Scholars) is a program developed to serve low-income undergraduate Engineering students at Penn State Berks, a regional campus of the Pennsylvania State University. As part of the program, scholars participate in a four-year comprehensive multi- tiered mentoring program and cohort experience. The LION STEM curricular program includes Engineering Ahead (a 4-week summer residential math-intensive bridge program prior to entering college), a first semester First-Year Seminar, and a second semester STEM-Persistence Seminar. Co-curricular activities focus on professional communication skills, financial literacy, career readiness, undergraduate research, and community engagement. The program seeks to accomplish four goals: (1) adapt, implement, and analyze evidence-based curricular and co- curricular activities to support, retain, and graduate a diverse set of the project's engineering scholars, (2) implement, test, and study through research and project evaluation strategies for systematically supporting student academic and career pathways in STEM, including development of STEM identity, (3) contribute to the knowledge base through investigation of the project's four-year multi-modal program so that other colleges may successfully implement similar programs, and (4) disseminate outcomes and findings related to the supports and interventions that promote student success to other institutions working to support low-income STEM students. The purpose of this paper is to analyze data from a repeated-measures design to provide a holistic narrative about the effects that the academic and support activities offered to LION STEM Scholars have on the development of their future-engineer role identity throughout their first year as an undergraduate engineering student. This paper presents data collected from semi- structured (Smith & Osborn, 2007) audio-recorded interviews from the first cohort of LION STEM Scholars (n=7) at three different time points (pre-summer bridge, post-summer bridge, end of first semester) as well as data collected from a written survey at the end of scholars’ second semester.
more »
« less
Board 267: Engineering a Transfer Friendly Experience with Alternative Pathways to Excellence
The Alternative Pathways to Excellence (APEX) program at the University of St. Thomas is an NSF funded S-STEM Track 2 project that seeks to strengthen efforts to recruit and retain STEM transfer students by integrating financial, academic, and practical supports. The APEX program provides student support services, formal and informal mentoring, curricular and co-curricular supports, and cohort building activities all formulated to create accessible pathways into engineering careers for a population of academically talented students with low income and high unmet financial need. The goals of this program are to increase recruitment by partnering with five regional community colleges, to award S-STEM scholarships of up to $10,000 annually to cohorts of 4-6 students each year, to increase retention by developing retention-friendly supports, and to graduate APEX scholars who go on to meaningfully contribute to fueling innovation in industry and/or academic post-graduate study. Generation of knowledge is based on studying the APEX program as a model and evaluating qualitative and quantitative data surrounding students’ successful transitions to a four-year institution. Program evaluation is focused on understanding how well APEX recruitment strategies contribute to increasing the number of low income and underrepresented students who transfer into the University of St. Thomas Engineering program and understanding the extent to which retention efforts are most beneficial to retaining students. In this work, we showcase initial program activities, and the initial results based on the first year of study and our first cohort of scholars.
more »
« less
- Award ID(s):
- 2130042
- PAR ID:
- 10561799
- Publisher / Repository:
- ASEE Conferences
- Date Published:
- Format(s):
- Medium: X
- Location:
- Baltimore , Maryland
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The overall goal of the NSF Division of Undergraduate Education (DUE) S-STEM funded "Attracting and Cultivating Cybersecurity Experts and Scholars through Scholarships" (ACCESS) program is to increase Cybersecurity-related STEM degree completion of low-income, high-achieving undergraduate students with demonstrated financial need and to generate knowledge about academic success, retention, persistence, graduation, and career pathways of these students to improve the education of future STEM workers. Specifically, ACCESS aims to contribute towards addressing the tremendous governmental and industry need for highly skilled cybersecurity experts. Program objectives include: (1) increasing annual enrollment of students in the B.S. in Computer and Information Sciences programs with specialization in Cybersecurity; (2) enhancing curricular and extra-curricular student support services and activities for students; (3) strengthening the partnerships with computer and information technology employers; and (4) investigating the impact of the curricular and co-curricular activities on student success. While significant research has been done relative to student success, retention, and persistence to graduation in STEM fields, cybersecurity is a new field of study and factors affecting student recruitment, academic success, retention, persistence to graduation within this field are not known. In year 1, students were recruited, applications were evaluated, and scholarships were awarded to nine academically talented students, beginning fall 2020. Of these students, four are female (one is from an underrepresented minority population) and five are male (three are from underrepresented minority populations). The students engage in a set of co-curriculum activities, including participation in: outreach activities; technical and career development seminars; a cybersecurity-focused student organization; and potentially, cybersecurity undergraduate research and summer internship opportunities. The paper and poster describe the background of the ACCESS program, recruitment and selection of ACCESS scholarship recipients, project activities, and challenges presented by the COVID-19 pandemic.more » « less
-
The Alternative Pathways to Excellence (APEX) Program at the University of St. Thomas, funded by NSF as an S-STEM Track 2 project, aims to solidify transfer pathways, and assist Engineering students by providing financial, academic, and practical support. The successful integration of transfer students into engineering programs presents a unique set of challenges and opportunities for higher education institutions. The APEX program offers a spectrum of student support services, both structured and informal mentoring, curricular and co-curricular supports, and collaborative activities. The program is designed to forge accessible pathways into engineering careers for students with high academic potential, who are facing financial constraints by granting annual S-STEM scholarships to a select group of students. This paper describes a layered mentoring approach adopted by our team that encompasses both pre-application and post-application phases. We explore the pivotal roles played by peers, faculty members, and industry advisors in mentoring aspiring engineers through their educational journey. The paper describes the support structures and strategies implemented before students apply to engineering programs, shedding light on how early mentoring can influence students' preparedness and motivation to pursue engineering degrees. This paper also reports on the ongoing mentoring and support mechanisms vital for transfer students during their engineering studies. Peer mentoring, faculty mentoring, and industry advisor mentorship are all integral components of this stage. Furthermore, the paper discusses the training routines and strategies employed to prepare faculty, industry advisors, and peer mentors for their roles in supporting engineering students. This training ensures that mentors are equipped with the necessary skills and knowledge to guide students effectively, foster their academic growth, and nurture their professional aspirations.more » « less
-
Eastern Mennonite University received a 5-year S-STEM award for their STEM Scholars Engaging in Local Problems (SSELP) program. The goal of this place-based, interdisciplinary scholarship program is to increase the number of academically talented, low-income students who graduate in STEM fields and either pursue immediate employment in STEM careers or STEM-related service or continue their STEM education in graduate school. In 2018 and 2019, two cohorts of seven students were recruited to major in biology, chemistry, engineering, computer science, mathematics, or environmental science. A key part of recruitment involved on-campus interviews, during a February Scholarship Day, between STEM faculty and potential scholars. As the yield rate for the event is high (54-66%), the university has continued this practice, funding additional STEM scholarships. In order to retain and graduate the scholars in STEM fields, the SSELP faculty designed and carried out various projects and activities to support the students. The SSELP Scholars participated in a first-year STEM Career Practicum class, a one-credit course that connected students with regional STEM practitioners across a variety of fields. The scholars were supported by peer tutors embedded in STEM classes, and now many are tutors themselves. They participated in collaborative projects where the cohorts worked to identify and solve a problem or need in their community. The SSELP scholars were supported by both faculty and peer mentors. Each scholarship recipient was matched with a faculty mentor in addition to an academic advisor. A faculty mentor was in a related STEM field but typically not teaching the student. Each scholar was matched with a peer mentor (junior or senior) in their intended major of study. In addition, community building activities were implemented to provide a significant framework for interaction within the cohort. To evaluate the progress of the SSELP program, multiple surveys were conducted. HERI/CIRP Freshman Survey was used in the fall of 2018 for the first cohort and 2019 for the second cohort. The survey indicated an upward shift in students’ perception of science and in making collaborative effort towards positive change. Preliminary data on the Science Motivation Questionnaire showed that the SSELP scholars began their university studies with lower averages than their non-SSELP STEM peers in almost every area of science motivation. After over three years of implementation of the NSF-funded STEM Scholars Engaging in Local Problems program, the recruitment effort has grown significantly in STEM fields in the university. Within the two cohorts, the most common majors were environmental science and engineering. While 100% of Cohorts 1 and 2 students were retained into the Fall semester of the second year, two students from Cohort 1 left the program between the third and fourth semesters of their studies. While one student from Cohort 2 had a leave of absence, they have returned to continue their studies. The support system formed among the SSELP scholars and between the scholars and faculty has benefited the students in both their academic achievement as well as their personal growth.more » « less
-
This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.more » « less
An official website of the United States government

