Developing a Coral Proxy System Model to Compare Coral and Climate Model Estimates of Changes in Paleo‐ENSO Variability
- Award ID(s):
- 1805874
- PAR ID:
- 10211517
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 35
- Issue:
- 7
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This protocol outlines a method of quantitatively measuring the degree of bleaching of a coral colony nondestructively in the field using image analysis. Previous studies have shown that mean intensity grey (MIG), also known as percent whiteness, is highly correlated with chlorophyll a and Symbiodiniaceae density (Chow et al. 2016, Amid et al. 2018), and therefore can be used to quantify the bleaching intensity of a coral colony. Color analysis can be done using digital photographs of live coral colonies either in situ (e.g., Maguire et al. 2003) or exsitu in the lab (Amid et al. 2018; this protocol). Photographs must be taken prior to any preservation or processing of tissue, such as freezing, use of preservatives or fixatives, airbrushing etc., to ensure no alteration of the original coral color occurs. In this protocol, corals are photographed in front of a white reference standard and the resulting color images are subsequently converted to 8-bit greyscale and analyzed. There are two steps to this protocol: 1) Photographing live coral fragments 2) Image analysis of mean grey valuemore » « less
-
Voolstra, Christian R. (Ed.)Model systems approaches search for commonality in patterns underlying biological diversity and complexity led by common evolutionary paths. The success of the approach does not rest on the species chosen but on the scalability of the model and methods used to develop the model and engage research. Fine-tuning approaches to improve coral cell cultures will provide a robust platform for studying symbiosis breakdown, the calcification mechanism and its disruption, protein interactions, micronutrient transport/exchange, and the toxicity of nanoparticles, among other key biological aspects, with the added advantage of minimizing the ethical conundrum of repeated testing on ecologically threatened organisms. The work presented here aimed to lay the foundation towards development of effective methods to sort and culture reef-building coral cells with the ultimate goal of obtaining immortal cell lines for the study of bleaching, disease and toxicity at the cellular and polyp levels. To achieve this objective, the team conducted a thorough review and tested the available methods (i.e. cell dissociation, isolation, sorting, attachment and proliferation). The most effective and reproducible techniques were combined to consolidate culture methods and generate uncontaminated coral cell cultures for ~7 days (10 days maximum). The tests were conducted on scleractinian corals Pocillopora acuta of the same genotype to harmonize results and reduce variation linked to genetic diversity. The development of cell separation and identification methods in conjunction with further investigations into coral cell-type specific metabolic requirements will allow us to tailor growth media for optimized monocultures as a tool for studying essential reef-building coral traits such as symbiosis, wound healing and calcification at multiple scales.more » « less
-
Ocean acidification (OA) is negatively affecting calcification in a wide variety of marine organisms. These effects are acute for many tropical scleractinian corals under short-term experimental conditions, but it is unclear how these effects interact with ecological processes, such as competition for space, to impact coral communities over multiple years. This study sought to test the use of individual-based models (IBMs) as a tool to scale up the effects of OA recorded in short-term studies to community-scale impacts, combining data from field surveys and mesocosm experiments to parameterize an IBM of coral community recovery on the fore reef of Moorea, French Polynesia. Focusing on the dominant coral genera from the fore reef, Pocillopora , Acropora , Montipora and Porites , model efficacy first was evaluated through the comparison of simulated and empirical dynamics from 2010–2016, when the reef was recovering from sequential acute disturbances (a crown-of-thorns seastar outbreak followed by a cyclone) that reduced coral cover to ~0% by 2010. The model then was used to evaluate how the effects of OA (1,100–1,200 µatm pCO 2 ) on coral growth and competition among corals affected recovery rates (as assessed by changes in % cover y −1 ) of each coral population between 2010–2016. The model indicated that recovery rates for the fore reef community was halved by OA over 7 years, with cover increasing at 11% y −1 under ambient conditions and 4.8% y −1 under OA conditions. However, when OA was implemented to affect coral growth and not competition among corals, coral community recovery increased to 7.2% y −1 , highlighting mechanisms other than growth suppression (i.e., competition), through which OA can impact recovery. Our study reveals the potential for IBMs to assess the impacts of OA on coral communities at temporal and spatial scales beyond the capabilities of experimental studies, but this potential will not be realized unless empirical analyses address a wider variety of response variables representing ecological, physiological and functional domains.more » « less
An official website of the United States government

