Sensory information in all modalities, except olfaction, is processed at the level of the thalamus before subsequent transmission to the cerebral cortex. This incoming sensory stream is refined and modulated in the thalamus by numerous descending corticothalamic projections originating in layer 6 that ultimately alter the sensitivity and selectivity for sensory features. In general, these sensory thalamo-cortico-thalamic loops are considered strictly unilateral, i.e., no contralateral crosstalk between cortex and thalamus. However, in contrast to this canonical view, we characterize here a prominent contralateral corticothalamic projection originating in the insular cortex, utilizing both retrograde tracing and cre-lox mediated viral anterograde tracing strategies with the Ntsr1-Cre transgenic mouse line. From our studies, we find that the insular contralateral corticothalamic projection originates from a separate population of layer 6 neurons than the ipsilateral corticothalamic projection. Furthermore, the contralateral projection targets a topographically distinct subregion of the thalamus than the ipsilateral projection. These findings suggest a unique bilateral mechanism for the top-down refinement of ascending sensory information.
more »
« less
Refinement of the Primate Corticospinal Pathway During Prenatal Development
Abstract Perturbation of the developmental refinement of the corticospinal (CS) pathway leads to motor disorders. While non-primate developmental refinement is well documented, in primates invasive investigations of the developing CS pathway have been confined to neonatal and postnatal stages when refinement is relatively modest. Here, we investigated the developmental changes in the distribution of CS projection neurons in cynomolgus monkey (Macaca fascicularis). Injections of retrograde tracer at cervical levels of the spinal cord at embryonic day (E) 95 and E105 show that: (i) areal distribution of back-labeled neurons is more extensive than in the neonate and dense labeling is found in prefrontal, limbic, temporal, and occipital cortex; (ii) distributions of contralateral and ipsilateral projecting CS neurons are comparable in terms of location and numbers of labeled neurons, in contrast to the adult where the contralateral projection is an order of magnitude higher than the ipsilateral projection. Findings from one largely restricted injection suggest a hitherto unsuspected early innervation of the gray matter. In the fetus there was in addition dense labeling in the central nucleus of the amygdala, the hypothalamus, the subthalamic nucleus, and the adjacent region of the zona incerta, subcortical structures with only minor projections in the adult control.
more »
« less
- Award ID(s):
- 1724297
- PAR ID:
- 10211674
- Date Published:
- Journal Name:
- Cerebral Cortex
- ISSN:
- 1047-3211
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reciprocal connections between primate dorsolateral prefrontal (DLPFC) and posterior parietal (PPC) cortices, furnished by subsets of layer 3 pyramidal neurons (PNs), contribute to cognitive processes including working memory (WM). A different subset of layer 3 PNs in each region projects to the homotopic region of the contralateral hemisphere. These ipsilateral (IP) and callosal (CP) projections, respectively, appear to be essential for the maintenance and transfer of information during WM. To determine if IP and CP layer 3 PNs in each region differ in their transcriptomes, fluorescent retrograde tracers were used to label IP and CP layer 3 PNs in the DLPFC and PPC from macaque monkeys. Retrogradely-labeled PNs were captured by laser microdissection and analyzed by RNAseq. Numerous differentially expressed genes (DEGs) were detected between IP and CP neurons in each region and the functional pathways containing many of these DEGs were shared across regions. However, DLPFC and PPC displayed opposite patterns of DEG enrichment between IP and CP neurons. Cross-region analyses indicated that the cortical area targeted by IP or CP layer 3 PNs was a strong correlate of their transcriptome profile. These findings suggest that the transcriptomes of layer 3 PNs reflect regional, projection type and target region specificity.more » « less
-
Spatially invariant feature detection is a property of many visual systems that rely on visual information provided by two eyes. However, how information across both eyes is integrated for invariant feature detection is not fully understood. Here we investigate spatial invariance of looming responses in descending neurons (DNs) of Drosophila melanogaster. We find multiple looming responsive DNs integrate looming information across both eyes, even though their dendrites are restricted to a single visual hemisphere. One DN, the giant fiber (GF), responds invariantly to looming stimuli across tested azimuthal locations. We confirm visual information propagates to the GF from the contralateral eye through an unidentified pathway and demonstrate that the absence of this pathway alters GF responses to looming stimuli presented to the ipsilateral eye. Our data highlight a role for bilateral visual integration in generating consistent, looming-evoked escape responses that are robust across different stimulus locations and parameters.more » « less
-
Abstract Vocal learning in songbirds is mediated by cortico‐basal ganglia circuits that govern diverse functions during different stages of development. We investigated developmental changes in axonal projections to and from motor cortical regions that underlie learned vocal behavior in juvenile zebra finches (Taeniopygia guttata). Neurons in LMAN‐core project to RA, a motor cortical region that drives vocal output; these RA‐projecting neurons send a transient collateral projection to AId, a region adjacent to RA, during early vocal development. Both RA and AId project to a region of dorsal thalamus (DLM), which forms a feedback pathway to cortico‐basal ganglia circuitry. These projections provide pathways conveying efference copy and a means by which information about vocal motor output could be reintegrated into cortico‐basal ganglia circuitry, potentially aiding in the refinement of juvenile vocalizations during learning. We used tract‐tracing techniques to label the projections of LMAN‐core to AId and of RA to DLM in juvenile songbirds. The volume and density of terminal label in the LMAN‐core→AId projection declined substantially during early stages of sensorimotor learning. In contrast, the RA→DLM projection showed no developmental change. The retraction of LMAN‐core→AId axon collaterals indicates a loss of efference copy to AId and suggests that projections that are present only during early stages of sensorimotor learning mediate unique, temporally restricted processes of goal‐directed learning. Conversely, the persistence of the RA→DLM projection may serve to convey motor information forward to the thalamus to facilitate song production during both learning and maintenance of vocalizations.more » « less
-
Abstract Adult male zebra finches (Taeniopygia guttata) continually incorporate adult‐born neurons into HVC, a telencephalic brain region necessary for the production of learned song. These neurons express activity‐dependent immediate early genes (e.g.,zenkandc‐fos) following song production, suggesting that these neurons are active during song production. Half of these adult‐born HVC neurons (HVC NNs) can be backfilled from the robust nucleus of the arcopallium (RA) and are a part of the vocal motor pathway underlying learned song production, but the other half do not backfill from RA, and they remain to be characterized. Here, we used cell birth‐dating, retrograde tract tracing, and immunofluorescence to demonstrate that half of all HVC NNs express the phosphoprotein DARPP‐32, a protein associated with dopamine receptor expression. We also demonstrate that DARPP‐32+ HVC NNs are contacted by tyrosine hydroxylase immunoreactive fibers, suggesting that they receive catecholaminergic input, have transiently larger nuclei than DARPP‐32‐neg HVC NNs, and do not backfill from RA. Taken together, these findings help characterize a group of HVC NNs that have no apparent projections to RA and so far have eluded positive identification other than HVC NN status.more » « less
An official website of the United States government

