skip to main content


Title: On Matrix Momentum Stochastic Approximation and Applications to Q-learning
Stochastic approximation (SA) algorithms are recursive techniques used to obtain the roots of functions that can be expressed as expectations of a noisy parameterized family of functions. In this paper two new SA algorithms are introduced: 1) PolSA, an extension of Polyak's momentum technique with a specially designed matrix momentum, and 2) NeSA, which can either be regarded as a variant of Nesterov's acceleration method, or a simplification of PolSA. The rates of convergence of SA algorithms is well understood. Under special conditions, the mean square error of the parameter estimates is bounded by σ 2 /n+o(1/n), where σ 2 ≥ 0 is an identifiable constant. If these conditions fail, the rate is typically sub-linear. There are two well known SA algorithms that ensure a linear rate, with minimal value of variance, σ 2 : the Ruppert-Polyak averaging technique, and the stochastic Newton-Raphson (SNR) algorithm. It is demonstrated here that under mild technical assumptions, the PolSA algorithm also achieves this optimality criteria. This result is established via novel coupling arguments: It is shown that the parameter estimates obtained from the PolSA algorithm couple with those of the optimal variance (but computationally more expensive) SNR algorithm, at a rate O(1/n 2 ). The newly proposed algorithms are extended to a reinforcement learning setting to obtain new Q-learning algorithms, and numerical results confirm the coupling of PolSA and SNR.  more » « less
Award ID(s):
1646229
NSF-PAR ID:
10211836
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Allerton Conference on Communication, Control, and Computing
Page Range / eLocation ID:
749 to 756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper concerns error bounds for recursive equations subject to Markovian disturbances. Motivating examples abound within the fields of Markov chain Monte Carlo (MCMC) and Reinforcement Learning (RL), and many of these algorithms can be interpreted as special cases of stochastic approximation (SA). It is argued that it is not possible in general to obtain a Hoeffding bound on the error sequence, even when the underlying Markov chain is reversible and geometrically ergodic, such as the M/M/1 queue. This is motivation for the focus on mean square error bounds for parameter estimates. It is shown that mean square error achieves the optimal rate of $O(1/n)$, subject to conditions on the step-size sequence. Moreover, the exact constants in the rate are obtained, which is of great value in algorithm design 
    more » « less
  2. Momentum methods such as Polyak's heavy ball (HB) method, Nesterov's accelerated gradient (AG) as well as accelerated projected gradient (APG) method have been commonly used in machine learning practice, but their performance is quite sensitive to noise in the gradients. We study these methods under a first-order stochastic oracle model where noisy estimates of the gradients are available. For strongly convex problems, we show that the distribution of the iterates of AG converges with the accelerated linear rate to a ball of radius " centered at a unique invariant distribution in the 1-Wasserstein metric where  is the condition number as long as the noise variance is smaller than an explicit upper bound we can provide. Our analysis also certifies linear convergence rates as a function of the stepsize, momentum parameter and the noise variance; recovering the accelerated rates in the noiseless case and quantifying the level of noise that can be tolerated to achieve a given performance. To the best of our knowledge, these are the first linear convergence results for stochastic momentum methods under the stochastic oracle model. We also develop finer results for the special case of quadratic objectives, extend our results to the APG method and weakly convex functions showing accelerated rates when the noise magnitude is sufficiently small. 
    more » « less
  3. We propose a novel policy gradient method for multi-agent reinforcement learning, which leverages two different variance-reduction techniques and does not require large batches over iterations. Specifically, we propose a momentum-based decentralized policy gradient tracking (MDPGT) where a new momentum-based variance reduction technique is used to approximate the local policy gradient surrogate with importance sampling, and an intermediate parameter is adopted to track two consecutive policy gradient surrogates. MDPGT provably achieves the best available sample complexity of O(N -1 e -3) for converging to an e-stationary point of the global average of N local performance functions (possibly nonconcave). This outperforms the state-of-the-art sample complexity in decentralized model-free reinforcement learning and when initialized with a single trajectory, the sample complexity matches those obtained by the existing decentralized policy gradient methods. We further validate the theoretical claim for the Gaussian policy function. When the required error tolerance e is small enough, MDPGT leads to a linear speed up, which has been previously established in decentralized stochastic optimization, but not for reinforcement learning. Lastly, we provide empirical results on a multi-agent reinforcement learning benchmark environment to support our theoretical findings. 
    more » « less
  4. Wallach, H. ; Larochelle, H. ; Beygelzimer, A. ; d'Alché-Buc, F. ; Fox, E. ; Garnett, R. (Ed.)
    Variance reduction has emerged in recent years as a strong competitor to stochastic gradient descent in non-convex problems, providing the first algorithms to improve upon the converge rate of stochastic gradient descent for finding first-order critical points. However, variance reduction techniques typically require carefully tuned learning rates and willingness to use excessively large "mega-batches" in order to achieve their improved results. We present a new algorithm, STORM, that does not require any batches and makes use of adaptive learning rates, enabling simpler implementation and less hyperparameter tuning. Our technique for removing the batches uses a variant of momentum to achieve variance reduction in non-convex optimization. On smooth losses $F$, STORM finds a point $\boldsymbol{x}$ with $E[\|\nabla F(\boldsymbol{x})\|]\le O(1/\sqrt{T}+\sigma^{1/3}/T^{1/3})$ in $T$ iterations with $\sigma^2$ variance in the gradients, matching the optimal rate and without requiring knowledge of $\sigma$. 
    more » « less
  5. Theory and application of stochastic approximation (SA) has grown within the control systems community since the earliest days of adaptive control. This paper takes a new look at the topic, motivated by recent results establishing remarkable performance of SA with (sufficiently small) constant step-size \alpha>0. If averaging is implemented to obtain the final parameter estimate, then the estimates are asymptotically unbiased with nearly optimal asymptotic covariance. These results have been obtained for random linear SA recursions with i.i.d.\ coefficients. This paper obtains very different conclusions in the more common case of geometrically ergodic Markovian disturbance: (i) The target bias is identified, even in the case of non-linear SA, and is in general non-zero. The remaining results are established for linear SA recursions: (ii) the bivariate parameter-disturbance process is geometrically ergodic in a topological sense; (iii) the representation for bias has a simpler form in this case, and cannot be expected to be zero if there is multiplicative noise; (iv) the asymptotic covariance of the averaged parameters is within O(\alpha) of optimal. The error term is identified, and may be massive if mean dynamics are not well conditioned. The theory is illustrated with application to TD-learning. 
    more » « less