We assessed mechanistic temperature influence on flowering by incorporating temperature-responsive flowering mechanisms across developmental age into an existing model. Temperature influences the leaf production rate as well as expression of FLOWERING LOCUS T (FT), a photoperiodic flowering regulator that is expressed in leaves. The Arabidopsis Framework Model incorporated temperature influence on leaf growth but ignored the consequences of leaf growth on and direct temperature influence of FT expression. We measured FT production in differently aged leaves and modified the model, adding mechanistic temperature influence on FT transcription, and causing whole-plant FT to accumulate with leaf growth. Our simulations suggest that in long days, the developmental stage (leaf number) at which the reproductive transition occurs is influenced by day length and temperature through FT, while temperature influences the rate of leaf production and the time (in days) the transition occurs. Further, we demonstrate that FT is mainly produced in the first 10 leaves in the Columbia (Col-0) accession, and that FT accumulation alone cannot explain flowering in conditions in which flowering is delayed. Our simulations supported our hypotheses that: (i) temperature regulation of FT, accumulated with leaf growth, is a component of thermal time, and (ii) incorporating mechanistic temperature regulation of FT can improve model predictions when temperatures change over time.
more »
« less
Molecular regulation of plant developmental transitions and plant architecture via PEPB family proteins – an update on mechanism of action
Abstract This year marks the 100 th anniversary of the experiments by Garner and Allard (Garner and Allard, 1920) that showed that plants measure the duration of the night and day (the photoperiod) to time flowering. This discovery led to the identification of Flowering Locus T (FT) in Arabidopsis and Heading Date 3a (Hd3a) in rice as a mobile signal that promotes flowering in tissues distal to the site of cue perception. FT/Hd3a belong to the family of phosphatidylethanolamine binding proteins (PEBPs). Collectively, these proteins control plant developmental transitions and plant architecture. Several excellent recent reviews have focused on the roles of PEBP proteins in diverse plant species; here we will primarily highlight recent advances that enhance our understanding of the mechanism of action of PEBP proteins and discuss critical open questions.
more »
« less
- Award ID(s):
- 1905062
- PAR ID:
- 10211880
- Date Published:
- Journal Name:
- Journal of Experimental Botany
- ISSN:
- 0022-0957
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The precise onset of flowering is crucial to ensure successful plant reproduction. The geneFLOWERING LOCUS T(FT) encodes florigen, a mobile signal produced in leaves that initiates flowering at the shoot apical meristem. In response to seasonal changes,FTis induced in phloem companion cells located in distal leaf regions. Thus far, a detailed molecular characterization of theFT-expressing cells has been lacking. Here, we used bulk nuclei RNA-seq and single nuclei RNA (snRNA)-seq to investigate gene expression inFT-expressing cells and other phloem companion cells. Our bulk nuclei RNA-seq demonstrated thatFT-expressing cells in cotyledons and in true leaves differed transcriptionally. Within the true leaves, our snRNA-seq analysis revealed that companion cells with highFTexpression form a unique cluster in which many genes involved in ATP biosynthesis are highly upregulated. The cluster also expresses other genes encoding small proteins, including the flowering and stem growth inducer FPF1-LIKE PROTEIN 1 (FLP1) and the anti-florigen BROTHER OF FT AND TFL1 (BFT). In addition, we found that the promoters ofFTand the genes co-expressed withFTin the cluster were enriched for the consensus binding motifs of NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1). Overexpression of the paralogousNIGT1.2andNIGT1.4repressedFTexpression and significantly delayed flowering under nitrogen-rich conditions, consistent with NIGT1s acting as nitrogen-dependentFTrepressors. Taken together, our results demonstrate that majorFT-expressing cells show a distinct expression profile that suggests that these cells may produce multiple systemic signals to regulate plant growth and development.more » « less
-
The circadian clock represents a critical regulatory network, which allows plants to anticipate environmental changes as inputs and promote plant survival by regulating various physiological outputs. Here, we examine the function of the clock-regulated transcription factor, CYCLING DOF FACTOR 6 (CDF6), during cold stress in Arabidopsis thaliana . We found that the clock gates CDF6 transcript accumulation in the vasculature during cold stress. CDF6 mis-expression results in an altered flowering phenotype during both ambient and cold stress. A genome-wide transcriptome analysis links CDF6 to genes associated with flowering and seed germination during cold and ambient temperatures, respectively. Analysis of key floral regulators indicates that CDF6 alters flowering during cold stress by repressing photoperiodic flowering components, FLOWERING LOCUS T ( FT ), CONSTANS ( CO ), and BROTHER OF FT (BFT) . Gene ontology enrichment further suggests that CDF6 regulates circadian and developmental-associated genes. These results provide insights into how the clock-controlled CDF6 modulates plant development during moderate cold stress.more » « less
-
Abstract Protein activity, abundance, and stability can be regulated by post-translational modification including ubiquitination. Ubiquitination is conserved among eukaryotes and plays a central role in modulating cellular function; yet, we lack comprehensive catalogs of proteins that are modified by ubiquitin in plants. In this study, we describe an antibody-based approach to enrich ubiquitinated peptides coupled with isobaric labeling to enable quantification of up to 18-multiplexed samples. This approach identified 17,940 ubiquitinated lysine sites arising from 6,453 proteins from Arabidopsis (Arabidopsis thaliana) primary roots, seedlings, and rosette leaves. Gene ontology analysis indicated that ubiquitinated proteins are associated with numerous biological processes including hormone signaling, plant defense, protein homeostasis, and metabolism. We determined ubiquitinated lysine residues that directly regulate the stability of three transcription factors, CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX 1 (CIB1), CIB1 LIKE PROTEIN 2 (CIL2), and SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) using in vivo degradation assays. Furthermore, codon mutation of CIB1 to create a K166R conversion to prevent ubiquitination, via CRISPR/Cas9-derived adenosine base editing, led to an early flowering phenotype and increased expression of FLOWERING LOCUS T (FT). These comprehensive site-level ubiquitinome profiles provide a wealth of data for future functional studies related to modulation of biological processes mediated by this post-translational modification in plants.more » « less
-
Summary Seasonal changes in spring induce flowering by expressing the florigen, FLOWERING LOCUS T (FT), inArabidopsis.FTis expressed in unique phloem companion cells with unknown characteristics. The question of which genes are co-expressed withFTand whether they have roles in flowering remains elusive. Through tissue-specific translatome analysis, we discovered that under long-day conditions with the natural sunlight red/far-red ratio, theFT-producing cells express a gene encoding FPF1-LIKE PROTEIN 1 (FLP1). The masterFTregulator, CONSTANS (CO), controlsFLP1expression, suggestingFLP1’s involvement in the photoperiod pathway. FLP1 promotes early flowering independently ofFT,is active in the shoot apical meristem, and induces the expression ofSEPALLATA 3(SEP3), a key E-class homeotic gene. Unlike FT, FLP1 facilitates inflorescence stem elongation. Our cumulative evidence indicates that FLP1 may act as a mobile signal. Thus, FLP1 orchestrates floral initiation together with FT and promotes inflorescence stem elongation during reproductive transitions.more » « less
An official website of the United States government

