skip to main content


Title: Hardness Development of Mechanically-Bonded Hybrid Nanostructured Alloys through High-Pressure Torsion
Processing through the application of high-pressure torsion (HPT) provides significant grain refinement in bulk metals at room temperature. These ultrafine-grained (UFG) materials after HPT generally demonstrate exceptional mechanical properties. Recent reports demonstrated the bulk-state reactions for mechanical bonding of dissimilar lightweight metal disks to synthesize hybrid alloy systems by utilizing conventional HPT processing. Accordingly, the present report provides a comprehensive summary of the recent work on processing of several UFG hybrid alloy systems including Al-Mg and Al-Cu by HPT under 6.0 GPa at room temperature and a special emphasis was placed on understanding the evolution of hardness. This study demonstrates a significant opportunity for the application of HPT for a possible contribution to current enhancements in diffusion bonding, welding and mechanical joining technologies as well as to an introduction of hybrid engineering nanomaterials.  more » « less
Award ID(s):
1810343
PAR ID:
10211959
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Materials Science Forum
Volume:
1016
ISSN:
1662-9752
Page Range / eLocation ID:
177 to 182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2.  
    more » « less
  3. Solid‐state welding of Al 1043 sheets is achieved via high‐pressure torsion (HPT) processing to produce bulk nanostructured Al disks. A homogeneous nanostructure without segregation is observed, with grain sizes of ≈430–470 nm. Miniature tensile testing, coupled with the digital image correlation (DIC) technique, is employed to determine the room‐temperature tensile deformation behavior, particularly the nonuniform behavior with necking, of the HPT‐bonded ultrafine‐grained (UFG) aluminum, comparing it with annealed coarse‐grained counterpart. The HPT‐bonded UFG Al exhibits a large fraction of post‐necking strain, which is supported by the estimated high strain rate sensitivity value ofm = 0.085, suggesting the delay of local necking leading to tensile fracture. Detailed DIC analysis reveals prolonged diffuse necking, thus delaying local necking, in the HPT‐bonded UFG Al, while the annealed samples show high fractions of local necking during the nonuniform deformation. Moreover, the DIC data illustrate that local necking predominantly occurred at a limited neck zone, maintaining a plateau strain distribution at the out‐of‐neck zone throughout necking deformation toward tensile failure for both annealed and UFG aluminum. The DIC method offers an alternative means to demonstrate the transition in necking behaviors of materials by estimating the plastic lateral contraction exponent.

     
    more » « less
  4. Zinc (Zn) alloys, particularly those incorporating magnesium (Mg), have been explored as potential bioabsorbable metals. However, there is a continued need to enhance the corrosion characteristics of Zn-Mg alloys to fulfill the requirements for biodegradable implants. This work involves a corrosion behavior comparison between severe-plastic-deformation (SPD) processed cast Zn-Mg alloys and their hybrid counterparts, having equivalent nominal compositions. The SPD processing technique used was high-pressure torsion (HPT), and the corrosion behavior was studied as a function of the number of turns (1, 5, 15) for the Zn-3Mg (wt.%) alloy and hybrid and as a function of composition (Mg contents of 3, 10, 30 wt.%) for the hybrid after 15 turns. The results indicated that HPT led to multimodal grain size distributions of ultrafine Mg-rich grains containing MgZn2 and Mg2Zn11 nanoscale intermetallics in a matrix of coarser dislocation-free Zn-rich grains. A greater number of turns resulted in greater corrosion resistance because of the formation of the intermetallic phases. The HPT hybrid was more corrosion resistant than its alloy counterpart because it tended to form the intermetallics more readily than the alloy due to the inhomogeneous conditions of the materials before the HPT processing as well as the non-equilibrium conditions imposed during the HPT processing. The HPT hybrids with greater Mg contents were less corrosion resistant because the addition of Mg led to less noble behavior.

     
    more » « less
  5. null (Ed.)
    The processing of bulk metals through the application of severe plastic deformation (SPD), using procedures such as equal-channel angular pressing (ECAP) and high-pressure torsion (HPT), is now well established for the fabrication of materials with exceptionally small grain sizes, usually in the submicrometer range and often having grain sizes at the nanometer level. These grain sizes cannot be achieved using thermo-mechanical processing or any conventional processing techniques. Recently, these procedures have been further developed to process alternative advanced materials. For example, by stacking separate disks within the HPT facility for the synthesis of bulk nanocrystalline metastable alloys where it is possible to achieve exceptionally high hardness, or by pressing powders or metallic particles in order to obtain new and novel nanocomposites exhibiting unusual properties. 
    more » « less