skip to main content


Title: Virtual Energy Storage from Flexible Loads: Distributed Control with QoS Constraints.
Loads are expected to help the power grid of the future in balancing the highs and lows caused by intermittent renewables such as solar and wind. With appropriate intelligence, loads will be able manipulate demand around a nominal baseline so that the increase and decrease of demand appears like charging and discharging of a battery, thereby creating a virtual energy storage (VES) device. An important question for the control systems community is: how to control these flexible loads so that the apparently conflicting goal of maintaining consumers’ quality of service (QoS) and providing reliable grid support are achieved? We advocate a frequency domain thinking of handling both of these issues, along the lines of a recent paper. In this article, we discuss some of the challenges and opportunities in designing appropriate control algorithms and coordination architectures in obtaining reliable VES from flexible loads.  more » « less
Award ID(s):
1646229
NSF-PAR ID:
10211986
Author(s) / Creator(s):
Editor(s):
Stoustrup J., Annaswamy A.
Date Published:
Journal Name:
Smart Grid Control. Power Electronics and Power Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is enormous flexibility potential in the power consumption of the majority of electric loads. This flexibility can be harnessed to obtain services for managing the grid: with carefully designed decision rules in place, power consumption for the population of loads can be ramped up and down, just like charging and discharging a battery, without any significant impact to consumers' needs. The concept is called Demand Dispatch, and the grid resource obtained from this design virtual energy storage (VES). In order to deploy VES, a balancing authority is faced with two challenges: 1. how to design local decision rules for each load given the target aggregate power consumption (distributed control problem), and 2. how to coordinate a portfolio of resources to maintain grid balance, given a forecast of net-load (resource allocation problem).Rather than separating resource allocation and distributed control, in this paper the two problems are solved simultaneously using a single convex program. The joint optimization model is cast as a finite-horizon optimal control problem in a mean-field setting, based on the new KLQ optimal control approach proposed recently by the authors.The simplicity of the proposed control architecture is remarkable: With a large portfolio of heterogeneous flexible resources, including loads such as residential water heaters, commercial water heaters, irrigation, and utility-scale batteries, the control architecture leads to a single scalar control signal broadcast to every resource in the domain of the balancing authority. Keywords: Smart grids, demand dispatch, distributed control, controlled Markov chains. 
    more » « less
  2. null (Ed.)
    A new stochastic control methodology is introduced for distributed control, motivated by the goal of creating virtual energy storage from flexible electric loads, i.e. Demand Dispatch. In recent work, the authors have introduced Kullback- Leibler-Quadratic (KLQ) optimal control as a stochastic control methodology for Markovian models. This paper develops KLQ theory and demonstrates its applicability to demand dispatch. In one formulation of the design, the grid balancing authority simply broadcasts the desired tracking signal, and the hetero-geneous population of loads ramps power consumption up and down to accurately track the signal. Analysis of the Lagrangian dual of the KLQ optimization problem leads to a menu of solution options, and expressions of the gradient and Hessian suitable for Monte-Carlo-based optimization. Numerical results illustrate these theoretical results. 
    more » « less
  3. Editor-in-Chief: George Yin (Ed.)
    This paper presents approaches to mean-field control, motivated by distributed control of multi-agent systems. Control solutions are based on a convex optimization problem, whose domain is a convex set of probability mass functions (pmfs). The main contributions follow: 1. Kullback-Leibler-Quadratic (KLQ) optimal control is a special case, in which the objective function is composed of a control cost in the form of Kullback-Leibler divergence between a candidate pmf and the nominal, plus a quadratic cost on the sequence of marginals. Theory in this paper extends prior work on deterministic control systems, establishing that the optimal solution is an exponential tilting of the nominal pmf. Transform techniques are introduced to reduce complexity of the KLQ solution, motivated by the need to consider time horizons that are much longer than the inter-sampling times required for reliable control. 2. Infinite-horizon KLQ leads to a state feedback control solution with attractive properties. It can be expressed as either state feedback, in which the state is the sequence of marginal pmfs, or an open loop solution is obtained that is more easily computed. 3. Numerical experiments are surveyed in an application of distributed control of residential loads to provide grid services, similar to utility-scale battery storage. The results show that KLQ optimal control enables the aggregate power consumption of a collection of flexible loads to track a time-varying reference signal, while simultaneously ensuring each individual load satisfies its own quality of service constraints. 
    more » « less
  4. null (Ed.)
    Pronounced variability due to the growth of renewable energy sources, flexible loads, and distributed generation is challenging residential distribution systems. This context, motivates well fast, efficient, and robust reactive power control. Optimal reactive power control is possible in theory by solving a non-convex optimization problem based on the exact model of distribution flow. However, lack of high-precision instrumentation and reliable communications, as well as the heavy computational burden of non-convex optimization solvers render computing and implementing the optimal control challenging in practice. Taking a statistical learning viewpoint, the input-output relationship between each grid state and the corresponding optimal reactive power control (a.k.a., policy) is parameterized in the present work by a deep neural network, whose unknown weights are updated by minimizing the accumulated power loss over a number of historical and simulated training pairs, using the policy gradient method. In the inference phase, one just feeds the real-time state vector into the learned neural network to obtain the ‘optimal’ reactive power control decision with only several matrix-vector multiplications. The merits of this novel deep policy gradient approach include its computational efficiency as well as robustness to random input perturbations. Numerical tests on a 47-bus distribution network using real solar and consumption data corroborate these practical merits. 
    more » « less
  5. null (Ed.)
    We propose a decentralized algorithm to help reduce demand-supply imbalance in a power grid by varying the demand from loads, just like charging and discharging a battery. The algorithm ensures strict bounds on the consumers' quality of service (QoS) by constraining the bandwidth of demand variation. A model-predictive-control formulation is adopted to compute local decisions at the loads. The algorithm is decentralized in the sense that loads do not communicate with one another. Instead, loads coordinate using local measurements of the grid frequency, which provide information about global demand-supply imbalance. It is envisioned that consumers will be recruited through long-term contracts, aided by the QoS guarantees provided by the proposed scheme. Simulation results show that loads are able to reduce frequency deviations while maintaining QoS constraints and that the performance of the algorithm scales well with the number of loads. Closed-loop stability is established under some assumptions. 
    more » « less