skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simultaneous Allocation and Control of Distributed Energy Resources via Kullback-Leibler-Quadratic Optimal Control
There is enormous flexibility potential in the power consumption of the majority of electric loads. This flexibility can be harnessed to obtain services for managing the grid: with carefully designed decision rules in place, power consumption for the population of loads can be ramped up and down, just like charging and discharging a battery, without any significant impact to consumers' needs. The concept is called Demand Dispatch, and the grid resource obtained from this design virtual energy storage (VES). In order to deploy VES, a balancing authority is faced with two challenges: 1. how to design local decision rules for each load given the target aggregate power consumption (distributed control problem), and 2. how to coordinate a portfolio of resources to maintain grid balance, given a forecast of net-load (resource allocation problem).Rather than separating resource allocation and distributed control, in this paper the two problems are solved simultaneously using a single convex program. The joint optimization model is cast as a finite-horizon optimal control problem in a mean-field setting, based on the new KLQ optimal control approach proposed recently by the authors.The simplicity of the proposed control architecture is remarkable: With a large portfolio of heterogeneous flexible resources, including loads such as residential water heaters, commercial water heaters, irrigation, and utility-scale batteries, the control architecture leads to a single scalar control signal broadcast to every resource in the domain of the balancing authority. Keywords: Smart grids, demand dispatch, distributed control, controlled Markov chains.  more » « less
Award ID(s):
1935389
PAR ID:
10347487
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
American Control Conference
Page Range / eLocation ID:
514 to 520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A new stochastic control methodology is introduced for distributed control, motivated by the goal of creating virtual energy storage from flexible electric loads, i.e. Demand Dispatch. In recent work, the authors have introduced Kullback- Leibler-Quadratic (KLQ) optimal control as a stochastic control methodology for Markovian models. This paper develops KLQ theory and demonstrates its applicability to demand dispatch. In one formulation of the design, the grid balancing authority simply broadcasts the desired tracking signal, and the hetero-geneous population of loads ramps power consumption up and down to accurately track the signal. Analysis of the Lagrangian dual of the KLQ optimization problem leads to a menu of solution options, and expressions of the gradient and Hessian suitable for Monte-Carlo-based optimization. Numerical results illustrate these theoretical results. 
    more » « less
  2. We have all heard that there is growing need to secure resources to obtain supply-demand balance in a power grid facing increasing volatility from renewable sources of energy. There are mandates for utility scale battery systems in regions all over the world, and there is a growing science of “demand dispatch” to obtain virtual energy storage from flexible electric loads such as water heaters, air conditioning, and pumps for irrigation. The question addressed in this tutorial is how to manage a large number of assets for balancing the grid. The focus is on variants of the economic dispatch problem, which may be regarded as the “feed-forward” component in an overall control architecture. 1) The resource allocation problem is identical to a finite horizon optimal control problem with degenerate cost—so called “cheap control”. This implies a form of state space collapse, whose form is identified: the marginal cost for each load class evolves in a two-dimensional subspace, spanned by a scalar co-state process and its derivative. 2) The implication to distributed control is remarkable. Once the co-state process is synthesized, this common signal may be broadcast to each asset for optimal control. However, the optimal solution is extremely fragile, in a sense made clear through results from numerical studies. 3) Several remedies are proposed to address fragility. One is described through “robust training” in a particular Q-learning architecture (one approach to reinforcement learning). In numerical studies it is found that specialized training leads to more robust control solutions. 
    more » « less
  3. Alessandro Astolfi (Ed.)
    Demand dispatch is the science of extracting virtual energy storage through the automatic control of deferrable loads to provide balancing or regulation services to the grid, while maintaining consumer-end quality of service.The control of a large collection of heterogeneous loads is in part a resource allocation problem, since different classes of loads are more valuable for different services. The goal of this paper is to unveil the structure of the optimal solution to the resource allocation problem, and investigate short-term market implications. It is found that the marginal cost for each load class evolves in a two-dimensional subspace: spanned by a co-state process and its derivative. The resource allocation problem is recast to construct a dynamic competitive equilibrium model, in which the consumer utility is the negative of the cost of deviation from ideal QoS. It is found that a competitive equilibrium exists with the equilibrium price equal to the negative of an optimal co-state process. Moreover, the equilibrium price is different than what would be obtained based on the standard assumption that the consumer's utility is a function of power consumption. 
    more » « less
  4. Stoustrup J., Annaswamy A. (Ed.)
    Loads are expected to help the power grid of the future in balancing the highs and lows caused by intermittent renewables such as solar and wind. With appropriate intelligence, loads will be able manipulate demand around a nominal baseline so that the increase and decrease of demand appears like charging and discharging of a battery, thereby creating a virtual energy storage (VES) device. An important question for the control systems community is: how to control these flexible loads so that the apparently conflicting goal of maintaining consumers’ quality of service (QoS) and providing reliable grid support are achieved? We advocate a frequency domain thinking of handling both of these issues, along the lines of a recent paper. In this article, we discuss some of the challenges and opportunities in designing appropriate control algorithms and coordination architectures in obtaining reliable VES from flexible loads. 
    more » « less
  5. Ardakanian, Omid; Niesse, Astrid (Ed.)
    The rapid growth of datacenter (DC) loads can be leveraged to help meet renewable portfolio standard (RPS, renewable fraction)targets in power grids. The ability to manipulate DC loads over time(shifting) provides a mechanism to deal with temporal mismatch between non-dispatchable renewable generation (e.g. wind and solar) and overall grid loads, and this flexibility ultimately facilitates the absorption of renewables and grid decarbonization. To this end, we study DC-grid coupling models, exploring their impact on grid dispatch, renewable absorption, power prices, and carbon emissions.With a detailed model of grid dispatch, generation, topology, and loads, we consider three coupling approaches: fixed, datacenter-local optimization (online dynamic programming), and grid-wide optimization (optimal power flow). Results show that understanding the effects of dynamic DC load management requires studies that model the dynamics of both load and power grid. Dynamic DC-grid coupling can produce large improvements: (1) reduce grid dispatch cost (-3%), (2) increase grid renewable fraction (+1.58%), and (3) reduce DC power cost (-16.9%).It also has negative effects: (1) increase cost for both DCs and non-DC customers, (2) differentially increase prices for non-DC customers, and (3) create large power-level changes that may harm DC productivity. 
    more » « less