skip to main content


Title: Simultaneous Allocation and Control of Distributed Energy Resources via Kullback-Leibler-Quadratic Optimal Control
There is enormous flexibility potential in the power consumption of the majority of electric loads. This flexibility can be harnessed to obtain services for managing the grid: with carefully designed decision rules in place, power consumption for the population of loads can be ramped up and down, just like charging and discharging a battery, without any significant impact to consumers' needs. The concept is called Demand Dispatch, and the grid resource obtained from this design virtual energy storage (VES). In order to deploy VES, a balancing authority is faced with two challenges: 1. how to design local decision rules for each load given the target aggregate power consumption (distributed control problem), and 2. how to coordinate a portfolio of resources to maintain grid balance, given a forecast of net-load (resource allocation problem).Rather than separating resource allocation and distributed control, in this paper the two problems are solved simultaneously using a single convex program. The joint optimization model is cast as a finite-horizon optimal control problem in a mean-field setting, based on the new KLQ optimal control approach proposed recently by the authors.The simplicity of the proposed control architecture is remarkable: With a large portfolio of heterogeneous flexible resources, including loads such as residential water heaters, commercial water heaters, irrigation, and utility-scale batteries, the control architecture leads to a single scalar control signal broadcast to every resource in the domain of the balancing authority. Keywords: Smart grids, demand dispatch, distributed control, controlled Markov chains.  more » « less
Award ID(s):
1935389
NSF-PAR ID:
10347487
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
American Control Conference
Page Range / eLocation ID:
514 to 520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alessandro Astolfi (Ed.)
    Demand dispatch is the science of extracting virtual energy storage through the automatic control of deferrable loads to provide balancing or regulation services to the grid, while maintaining consumer-end quality of service.The control of a large collection of heterogeneous loads is in part a resource allocation problem, since different classes of loads are more valuable for different services. The goal of this paper is to unveil the structure of the optimal solution to the resource allocation problem, and investigate short-term market implications. It is found that the marginal cost for each load class evolves in a two-dimensional subspace: spanned by a co-state process and its derivative. The resource allocation problem is recast to construct a dynamic competitive equilibrium model, in which the consumer utility is the negative of the cost of deviation from ideal QoS. It is found that a competitive equilibrium exists with the equilibrium price equal to the negative of an optimal co-state process. Moreover, the equilibrium price is different than what would be obtained based on the standard assumption that the consumer's utility is a function of power consumption. 
    more » « less
  2. null (Ed.)
    A new stochastic control methodology is introduced for distributed control, motivated by the goal of creating virtual energy storage from flexible electric loads, i.e. Demand Dispatch. In recent work, the authors have introduced Kullback- Leibler-Quadratic (KLQ) optimal control as a stochastic control methodology for Markovian models. This paper develops KLQ theory and demonstrates its applicability to demand dispatch. In one formulation of the design, the grid balancing authority simply broadcasts the desired tracking signal, and the hetero-geneous population of loads ramps power consumption up and down to accurately track the signal. Analysis of the Lagrangian dual of the KLQ optimization problem leads to a menu of solution options, and expressions of the gradient and Hessian suitable for Monte-Carlo-based optimization. Numerical results illustrate these theoretical results. 
    more » « less
  3. This paper focuses on optimizing resource allocation amongst a set of tenants, network slices, supporting dynamic customer loads over a set of distributed resources, e.g., base stations. The aim is to reap the benefits of statistical multiplexing resulting from flexible sharing of ‘pooled’ resources, while enabling tenants to differentiate and protect their performance from one another’s load fluctuations. To that end we consider a setting where resources are grouped into Virtual Resource Pools (VRPs) wherein resource allocation is jointly and dynam- ically managed. Specifically for each VRP we adopt a Share- Constrained Proportionally Fair (SCPF) allocation scheme where each tenant is allocated a fixed share (budget). This budget is to be distributed equally amongst its active customers which in turn are granted fractions of their associated VRP resources in proportion to customer shares. For a VRP with a single resource, this translates to the well known Generalized Processor Sharing (GPS) policy. For VRPs with multiple resources SCPF provides a flexible means to achieve load elastic allocations across tenants sharing the pool. Given tenants’ per resource shares and expected loads, this paper formulates the problem of determining optimal VRP partitions which maximize the overall expected shared weighted utility while ensuring protection guarantees. For a high load/capacity setting we exhibit this network utility function explicitly, quantifying the benefits and penalties of any VRP partition, in terms of network slices’ ability to achieve performance differentiation, load balancing, and statistical multiplexing. Although the problem is shown to be NP-Hard, a simple greedy heuristic is shown to be effective. Analysis and simulations confirm that the selection of optimal VRP partitions provide a practical avenue towards improving network utility in network slicing scenarios with dynamic loads. 
    more » « less
  4. Ardakanian, Omid ; Niesse, Astrid (Ed.)
    The rapid growth of datacenter (DC) loads can be leveraged to help meet renewable portfolio standard (RPS, renewable fraction)targets in power grids. The ability to manipulate DC loads over time(shifting) provides a mechanism to deal with temporal mismatch between non-dispatchable renewable generation (e.g. wind and solar) and overall grid loads, and this flexibility ultimately facilitates the absorption of renewables and grid decarbonization. To this end, we study DC-grid coupling models, exploring their impact on grid dispatch, renewable absorption, power prices, and carbon emissions.With a detailed model of grid dispatch, generation, topology, and loads, we consider three coupling approaches: fixed, datacenter-local optimization (online dynamic programming), and grid-wide optimization (optimal power flow). Results show that understanding the effects of dynamic DC load management requires studies that model the dynamics of both load and power grid. Dynamic DC-grid coupling can produce large improvements: (1) reduce grid dispatch cost (-3%), (2) increase grid renewable fraction (+1.58%), and (3) reduce DC power cost (-16.9%).It also has negative effects: (1) increase cost for both DCs and non-DC customers, (2) differentially increase prices for non-DC customers, and (3) create large power-level changes that may harm DC productivity. 
    more » « less
  5. We consider a large-scale service system where incoming tasks have to be instantaneously dispatched to one out of many parallel server pools. The user-perceived performance degrades with the number of concurrent tasks and the dispatcher aims at maximizing the overall quality of service by balancing the load through a simple threshold policy. We demonstrate that such a policy is optimal on the fluid and diffusion scales, while only involving a small communication overhead, which is crucial for large-scale deployments. In order to set the threshold optimally, it is important, however, to learn the load of the system, which may be unknown. For that purpose, we design a control rule for tuning the threshold in an online manner. We derive conditions that guarantee that this adaptive threshold settles at the optimal value, along with estimates for the time until this happens. In addition, we provide numerical experiments that support the theoretical results and further indicate that our policy copes effectively with time-varying demand patterns. Summary of Contribution: Data centers and cloud computing platforms are the digital factories of the world, and managing resources and workloads in these systems involves operations research challenges of an unprecedented scale. Due to the massive size, complex dynamics, and wide range of time scales, the design and implementation of optimal resource-allocation strategies is prohibitively demanding from a computation and communication perspective. These resource-allocation strategies are essential for certain interactive applications, for which the available computing resources need to be distributed optimally among users in order to provide the best overall experienced performance. This is the subject of the present article, which considers the problem of distributing tasks among the various server pools of a large-scale service system, with the objective of optimizing the overall quality of service provided to users. A solution to this load-balancing problem cannot rely on maintaining complete state information at the gateway of the system, since this is computationally unfeasible, due to the magnitude and complexity of modern data centers and cloud computing platforms. Therefore, we examine a computationally light load-balancing algorithm that is yet asymptotically optimal in a regime where the size of the system approaches infinity. The analysis is based on a Markovian stochastic model, which is studied through fluid and diffusion limits in the aforementioned large-scale regime. The article analyzes the load-balancing algorithm theoretically and provides numerical experiments that support and extend the theoretical results. 
    more » « less