skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The MAD Model of Moral Contagion: The Role of Motivation, Attention, and Design in the Spread of Moralized Content Online
With more than 3 billion users, online social networks represent an important venue for moral and political discourse and have been used to organize political revolutions, influence elections, and raise awareness of social issues. These examples rely on a common process to be effective: the ability to engage users and spread moralized content through online networks. Here, we review evidence that expressions of moral emotion play an important role in the spread of moralized content (a phenomenon we call moral contagion). Next, we propose a psychological model called the motivation, attention, and design (MAD) model to explain moral contagion. The MAD model posits that people have group-identity-based motivations to share moral-emotional content, that such content is especially likely to capture our attention, and that the design of social-media platforms amplifies our natural motivational and cognitive tendencies to spread such content. We review each component of the model (as well as interactions between components) and raise several novel, testable hypotheses that can spark progress on the scientific investigation of civic engagement and activism, political polarization, propaganda and disinformation, and other moralized behaviors in the digital age.  more » « less
Award ID(s):
1808868
PAR ID:
10212205
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Perspectives on Psychological Science
Volume:
15
Issue:
4
ISSN:
1745-6916
Page Range / eLocation ID:
978 to 1010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Moral outrage shapes fundamental aspects of human social life and is now widespread in online social networks. Here, we show how social learning processes amplify online moral outrage expressions over time. In two pre-registered observational studies of Twitter (7,331 users and 12.7 million total tweets) and two pre-registered behavioral experiments (N = 240), we find that positive social feedback for outrage expressions increases the likelihood of future outrage expressions, consistent with principles of reinforcement learning. We also find that outrage expressions are sensitive to expressive norms in users’ social networks, over and above users’ own preferences, suggesting that norm learning processes guide online outrage expressions. Moreover, expressive norms moderate social reinforcement of outrage: in ideologically extreme networks, where outrage expression is more common, users are less sensitive to social feedback when deciding whether to express outrage. Our findings highlight how platform design interacts with human learning mechanisms to impact moral discourse in digital public spaces. 
    more » « less
  2. Fitch, T.; Lamm, C.; Leder, H.; Teßmar-Raible, K. (Ed.)
    The QAnon conspiracy posits that Satan-worshiping Democrats operate a covert child sex-trafficking operation, which Donald Trump is destined to expose and annihilate. Emblematic of the ease with which political misconceptions can spread through social media, QAnon originated in late 2017 and rapidly grew to shape the political beliefs of millions. To illuminate the process by which a conspiracy theory spreads, we report two computational studies examining the social network structure and semantic content of tweets produced by users central to the early QAnon network on Twitter. Using data mined in the summer of 2018, we examined over 800,000 tweets about QAnon made by about 100,000 users. The majority of users disseminated rather than produced information, serving to create an online echochamber. Users appeared to hold a simplistic mental model in which political events are viewed as a struggle between antithetical forces—both observed and unobserved—of Good and Evil. 
    more » « less
  3. Social media provide a fertile ground where conspiracy theories and radical ideas can flourish, reach broad audiences, and sometimes lead to hate or violence beyond the online world itself. QAnon represents a notable example of a political conspiracy that started out on social media but turned mainstream, in part due to public endorsement by influential political figures. Nowadays, QAnon conspiracies often appear in the news, are part of political rhetoric, and are espoused by significant swaths of people in the United States. It is therefore crucial to understand how such a conspiracy took root online, and what led so many social media users to adopt its ideas. In this work, we propose a framework that exploits both social interaction and content signals to uncover evidence of user radicalization or support for QAnon. Leveraging a large dataset of 240M tweets collected in the run-up to the 2020 US Presidential election, we define and validate a multivariate metric of radicalization. We use that to separate users in distinct, naturally-emerging, classes of behaviors associated with radicalization processes, from self-declared QAnon supporters to hyper-active conspiracy promoters. We also analyze the impact of Twitter's moderation policies on the interactions among different classes: we discover aspects of moderation that succeed, yielding a substantial reduction in the endorsement received by hyperactive QAnon accounts. But we also uncover where moderation fails, showing how QAnon content amplifiers are not deterred or affected by the Twitter intervention. Our findings refine our understanding of online radicalization processes, reveal effective and ineffective aspects of moderation, and call for the need to further investigate the role social media play in the spread of conspiracies. 
    more » « less
  4. null (Ed.)
    A social media phenomenon that has received limited research attention is the advent and propagation of viral online challenges. Several of these challenges entail self-harming behavior, which, combined with their viral nature, poses physical and psychological risks for both participants and viewers. The objective of this study is to identify the nature of what people post about the social media challenges that vary in their level of risk. To do so, we conducted a qualitative analysis of three viral social media challenges, the Blue Whale, Tide Pod, and Ice Bucket challenges, based on 180 YouTube videos, 3,607 comments on those YouTube videos, and 450 Twitter posts. We identified common themes across the YouTube videos, comments, and Twitter posts: (1) promoting education and awareness, (2) criticizing the participants, (3) providing detailed information about the participants, (4) giving viewers a tutorial on how to participate, and (5) attempting to understand this seemingly senseless online behavior. We used social norm theory to discuss what leads people to post about the challenges and how posts intended to raise awareness about harmful challenges could potentially create a contagion effect by spreading knowledge about them, thereby increasing participation. Finally, we proposed design implications that could potentially minimize the risks and propagation of harmful social media challenges. 
    more » « less
  5. Web-based interactions enable agents to coordinate and generate collective action. Coordination can facilitate the spread of contagion to large groups within networked populations. In game theoretic contexts, coordination requires that agents share common knowledge about each other. Common knowledge emerges within a group when each member knows the states and the thresholds (preferences) of the other members, and critically, each member knows that everyone else has this information. Hence, these models of common knowledge and coordination on communication networks are fundamentally different from influence-based unilateral contagion models, such as those devised by Granovetter and Centola. Moreover, these models utilize different mechanisms for driving contagion. We evaluate three mechanisms of a common knowledge model that can represent web-based communication among groups of people on Facebook, using nine social (media) networks. We provide theoretical results indicating the intractability in identifying all node-maximal bicliques in a network, which is the characterizing network structure that produces common knowledge. Bicliques are required for model execution. We also show that one of the mechanisms (named PD2) dominates another mechanism (named ND2). Using simulations, we compute the spread of contagion on these networks in the Facebook model and demonstrate that different mechanisms can produce widely varying behaviors in terms of the extent of the spread and the speed of contagion transmission. We also quantify, through the fraction of nodes acquiring contagion, differences in the effects of the ND2 and PD2 mechanisms, which depend on network structure and other simulation inputs. 
    more » « less