The conventional manufacturing process of aerogel insulation material relies largely on the supercritical drying, which suffers from issues of massive energy consumption, high-cost equipment and prolonged processing time. With the consideration of large market demand of the aerogel insulation material in the next decade, a low-cost and scalable fabrication technique is highly desired. In this paper, a direct ink writing (DIW) method is used to three-dimensionally fabricate the silica aerogel insulation material, followed by room-temperature and ambient pressure drying. Compared to the supercritical drying and freeze-drying, the reported method significantly reduces the fabrication time and costs. The cost-effective DIW technique offers the capability to print complex hollow internal structures, coupled with the porous structure, is found to be beneficial to the thermal insulation property. The addition of fiber to the ink assures the durability of the fabricated product. The foam ink preparation methods and the printability are demonstrated in this paper, along with the printed samples for characterizing thermal insulation performance and mechanical properties.
more » « less- Award ID(s):
- 1846863
- PAR ID:
- 10212235
- Date Published:
- Journal Name:
- ASME 2020 15th International Manufacturing Science and Engineering Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract The conventional manufacturing processes of aerogel insulation material is largely relying on the supercritical drying, which suffers from issues of massive energy consumption, high-cost equipment, and prolonged processing time. With the consideration of large market demand of the aerogel insulation material in the next decade, a low-cost and scalable fabrication technique is highly desired. In this paper, a direct ink writing (DIW) method is used to three-dimensionally fabricate the silica aerogel insulation material, followed by room-temperature and ambient pressure drying. Compared to the supercritical drying and freeze-drying, the reported method significantly reduces the fabrication time and costs. The cost-effective DIW technique offers the capability to print complex hollow internal structures, coupled with the porous structure, is found to be beneficial to the thermal insulation property. The addition of fiber to the ink assures the durability of the fabricated product, without sacrificing the thermal insulation performance. The foam ink preparation methods and the printability are demonstrated in this paper, along with the printing of complex three-dimensional geometries. The thermal insulation performance of the printed objects is characterized, and the mechanical properties are also examined. The proposed approach is found to have 56% reduction in the processing time. The printed silica aerogels exhibit a low thermal conductivity of 0.053 W m−1 K−1.more » « less
-
This work focuses on fabrication of multi-hollow polyimide gel and aerogel particles from a surfactant-free oil-in-oil emulsion system using a microfluidic droplet generator operating under dripping mode. The multi-hollow gel and aerogel particles have strong potential in thermal insulation. Under jetting and tip-streaming regime of microfluidic flows, droplets are generated with no occluded liquid phase. The present study investigates a means of designing polyimide gel particles with plurality of internal liquid droplets by strategically manipulating the flow rates of the continuous and dispersed phase liquids through the microfluidic droplet generator. The multi-hollow polyimide aerogel particles obtained after supercritical drying of the gel particles present mesopores, high BET surface area, and excellent prospect for thermal insulation.more » « less
-
Thermal insulation materials reduce heat transfer and are typically made from materials like fiberglass, foam, or mineral wool, which are engineered to trap air and hinder heat conduction and convection. The traditional manufacturing processes of thermal insulation materials are often energy-intensive and result in significant greenhouse gas emissions. In the current global drive for sustainability, these energy-intensive manufacturing processes raise environmental concerns and need to be addressed. In this work, with the objective of addressing both material sustainability and manufacturing sustainability, we present an additive manufacturing strategy to fabricate biomass materials for thermal insulation applications. Firstly, we propose to use biomass materials, such as wheat straw, as the primary feedstock materials for manufacturing. Such biomass materials offer the unique capacity to sequester carbon dioxide during their growth, and when incorporated into thermal insulation structures, they effectively capture and store carbon inside the structure. Concurrently, our pursuit of manufacturing process sustainability is driven by using a cost-effective additive manufacturing technology to fabricate durable thermal insulation structures. In the presented work, we first demonstrate the formulation of a 3D-printable ink using chopped straw fibers. We conduct comprehensive rheological characterizations to reveal the shear-thinning properties and the printability of the straw fiber ink. Utilizing the direct ink writing (DIW) process, the straw fiber material is deposited into 3D structures. Following bulk material characterization tests, including microstructure, mechanical, and thermal tests. We unveil the low thermal conductivity and robust mechanical properties. This paper marks the first work of 3D printing of wheat straw fibers for thermal insulation structures. The discoveries in this pilot work demonstrate the potential to leverage additive manufacturing technologies and sustainable biomass materials to create both functional and value-added wheat straw parts tailored for thermal insulation applications.more » « less
-
Abstract The macro-porous ceramics has promising durability and thermal insulation performances. A cost-effective and scalable additive manufacturing technique for the fabrication of macro-porous ceramics, with a facile approach to control the printed porosity is reported in the paper. Several ceramic inks were prepared, the foaming agent was used to generate gaseous bubbles in the ink, followed by the direct ink writing and the ambient-pressure and room-temperature drying to create the three-dimensional geometries. The experimental studies were performed to optimize the printing quality. A set of studies revealed the optimal printing process parameters for printing the foamed ceramic ink with a high spatial resolution and fine surface quality. Varying the concentration of the foaming agent enabled the controllability of the structural porosity. The maximum porosity can reach 85%, with a crack-free internal porous structure. The tensile tests showed that the printed macro-porous ceramics have enhanced durability with the addition of fiber. With a high-fidelity 3D printing process and precise control of the porosity, the printed samples exhibited a low thermal conductivity and high mechanical strength.
-
Abstract Membranes serve as important components for modern manufacturing and purification processes but are conventionally associated with excessive solvent usage. Here, for the first time, a procedure for fabricating large area polysulfone membranes is demonstrated via the combination of direct ink writing (DIW) with non-solvent induced phase inversion (NIPS). The superior control and precision of this process allows for complete utilization of the polymer dope solution during membrane fabrication, thus enabling a significant reduction in material usage. Compared to doctor blade fabrication, a 63% reduction in dope solution volume was achieved using the DIW technique for fabricating similarly sized membranes. Cross flow filtration analysis revealed that, independent of the manufacturing method (DIW
vs. doctor blade), the membranes exhibited near identical separation properties. The separation properties were assessed in terms of bovine serum albumin (BSA) rejection and permeances (pressure normalized flux) of pure water and BSA solution. This new manufacturing strategy allows for the reduction of material and solvent usage while providing a large toolkit of tunable parameters which can aid in advancing membrane technology.